THE FLOW OF UCM FLUIDS PAST A CYLINDER

M.A. Alvesa, F. T. Pinhob and P. J. Oliveirac

aDepartamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto
Rua dos Bragas, 4050-123 Porto, Portugal

bCentro de Estudos de Fenómenos de Transporte, Faculdade de Engenharia da Universidade do
Porto, Rua dos Bragas, 4050-123 Porto, Portugal

cDepartamento de Engenharia Electromecânica, Universidade da Beira Interior
Rua Marquês D'Ávila e Bolama, 6200 Covilhã, Portugal

Abstract

The general colocated FVM procedure for viscoelastic flows developed by Oliveira et al \cite{1} has been modified to combine an high-order interpolation scheme with a boundedness criteria for improved accuracy and stability. The code relies on block-structured, colocated, nonorthogonal grids with indirect addressing for easy mapping of complex geometries, and it was used here to predict the inertialess flow around a planar cylinder, a well-known benchmark case. Under investigation was the upper convected Maxwell (UCM) fluid and the results compared favourably with the accurate data of Fan et al \cite{2}, which was obtained with the more expensive finite-element method.

1. INTRODUCTION

The increasing use of computational tools to design industrial equipment requires the ability to predict well the flow of viscoelastic fluids. The two-dimensional flow around a cylinder is relevant for industrial applications, and because of the difficulties associated with the development of thin stress layers on the cylinder surface and along the cylinder wake it has been used as a benchmark flow \cite{3}. There has been an enormous effort to develop adequate codes
and numerical procedures for the prediction of viscoelastic flows based on the finite-element technique (FEM)[2,4-5], and recently these have been tested against this benchmark problem.

Finite-volume methods (FVM) are serious alternatives to FEM codes for viscoelastic computations as they can be very advantageous in computing resources [6], but far less effort has been dedicated to the FVM technique than to finite elements.

General colocated FVM procedures for viscoelastic flows were developed by Phan-Thien and co-workers [7-8] for unstructured and Oliveira et al [1,9-10] for block-structured grids, to allow the mapping of complex geometries. Further improvements require the use of second- or higher-order interpolation schemes for the convective terms of the constitutive equation, but then stability must be enforced via appropriate boundedness criteria [10]. This combination leads to the so-called high-resolution schemes and in this paper one such method is used to predict the benchmark cylinder flow of upper convected Maxwell (UCM) fluids with a quality at a par with those of other advanced FEM methods [2].

Section 2 presents the governing equations, the finite volume is briefly described in Section 3. and the results of the simulations are presented and discussed in Section 4.

2. Governing equations

The code solves the system of equations of conservation of mass and linear momentum, and the constitutive equation for an UCM fluid which are written as follows:

\[
\frac{\partial u_i}{\partial x_i} = 0
\]

\[
\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} - \frac{\partial}{\partial x_j} \left(\frac{\eta}{\partial x_j} \right) = -\frac{\partial p}{\partial x_i} + \rho g_i + \frac{\partial \tau_{ij}}{\partial x_j} - \frac{\partial}{\partial x_j} \left(\frac{\eta}{\partial x_j} \right)
\]

\[
\tau_{ij} + \lambda \left(\frac{\partial \tau_{ij}}{\partial r} + u_k \frac{\partial \tau_{ij}}{\partial x_k} \right) = \eta \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{\partial u_k}{\partial x_k} \delta_{ij} \right) + \lambda \left(\tau_{jk} \frac{\partial u_i}{\partial x_k} + \tau_{ik} \frac{\partial u_j}{\partial x_k} \right)
\]

where \(\rho \) is the density of the fluid, \(u_i \) is the Cartesian velocity component along \(x_i \), \(p \) is the pressure, \(\lambda \) is the relaxation time, \(\delta_{ij} \) is the Kronecker delta and \(\eta \) is the shear viscosity.

The terms on l.h.s. of Eqs. (2) and (3) are dealt with implicitly, while those on the r.h.s. go into the source term of the matrix equations that result from the discretization procedure. The addition and subtraction of the normal diffusion term in Eq. (2) is for numerical convenience gained from experience with Newtonian computations, as it brings the final equations into the standard convection/diffusion form and makes the calculation method completely general regardless of the constitutive equation [9].

3. Numerical Method

Those equations are transformed into a general nonorthogonal co-ordinate system for application of the FVM method to a colocated mesh arrangement, prior to integration over the set of control volumes (cells) and final discretisation. The dependent variables remain the
Cartesian velocity and stress components and the pressure, all stored at the centre of the cells. To avoid stress-velocity decoupling, a special procedure explained in the previous works [1,9] is adopted for the calculation of the stress divergent term in the momentum equation. The novelty of this work is the high-resolution scheme used to interpolate the cell-face stresses originating in the convective terms of the constitutive equation, and only this issue will be addressed in detail below. Other details of the numerical method are given in [1,9,10].

3.1. Constitutive equation

The discretised form of the constitutive equation is casted in the usual form at a general cell \(P \) of volume \(V_P \)

\[
a_p \tau_{ij,P} - \sum F a_F \tau_{ij,F} = S_{\tau_{ij}} + \lambda P V_P \frac{\partial}{\partial t} \tau_{ij,P}^0
\]

(4)

As there is no diffusion of stress in the constitutive equation the coefficients \(a_F \) are composed only by convective contributions. In the present procedure a high-resolution scheme, to be explained below, is used together with the deferred correction approach of Rubin and Khosla [11]. In this approach, convective contributions based on the upwind differencing scheme are added to both hands of Eq. (4). The convective contribution on the l.h.s. is handled implicitly and on the r.h.s. the difference between the higher-order high-resolution scheme and the upwind scheme is handled explicitly in the context of time advancement. The source term in Eq. (4) also incorporates the part of the Oldroyd derivative on the r.h.s. of Eq. (3) which is evaluated with central differencing.

The convective coefficients based on the the upwind differencing scheme are given by

\[
a_F = -\frac{\lambda}{\rho} \min\{F_f, 0\}
\]

(5)

where \(F_f \) represents the mass flow rate across the face \(f \) between cells \(P \) and \(F \). This mass flux relies on a special Rhie and Chow type of interpolation to calculate the face velocities as a function of nodal velocities in order to ensure an adequate coupling between velocity and pressure [13]. Then, the central coefficient becomes

\[
a_p = V_p + \sum_F a_F + \frac{\lambda V_P}{\delta t}
\]

(6)

3.2. High-resolution differencing scheme (HRS)

In the FVM procedure, upon integration of the convective terms of the constitutive equation and the application of Gauss’ theorem one ends up with convective fluxes at cell faces and these need to be equated as a function of nodal values via appropriate interpolation schemes. The HRS adopted here was developed within the context of the normalised variable and space formulation (NVSF) of Darwish and Moukalled [13].

In the NVSF the convected stress component \(\tau_{ij} \) and the general curvilinear co-ordinate \(\xi \) are normalised as
\frac{\dot{t}_{ij}}{\dot{t}_{ij}} = \frac{\tau_{ij} - \tau_{ij,U}}{\tau_{ij,D} - \tau_{ij,U}} \tag{7}

\frac{\xi}{\xi} = \frac{\xi - \xi_U}{\xi_D - \xi_U} \tag{8}

where the subscripts U and D refer to the upstream and downstream cells to cell P, which is the cell immediately upstream of cell face \(f \) under consideration.

To satisfy the convection boundedness criterion (CBC) of Gaskell and Lau [14] the functional relationship of an interpolation scheme applied to a cell-face \(f \), \(\dot{t}_{ij,f} = \partial(\dot{t}_{ij,P}) \) must be continuous and bounded from below by \(\dot{t}_{ij,f} = \dot{t}_{ij,P} \) and from above by 1 in the range \(0 < \dot{t}_{ij,P} < 1 \). For the ranges \(\dot{t}_{ij,P} \leq 0 \) and \(\dot{t}_{ij,P} \geq 1 \) the functional must equal \(\dot{t}_{ij,P} \).

The MINMOD scheme adopted here combines the second order upwind scheme (SOU) and the central differencing scheme (CDS). In isolation, these differencing schemes fail to satisfy the convection boundedness criterion, but not when they are combined as in Eq. (9)

\[\dot{t}_{ij,f} = \begin{cases} \frac{\xi}{\xi} \dot{t}_{ij,P} & 0 < \dot{t}_{ij,P} < \frac{\xi}{\xi} \text{ (SOU)} \\ 1 - \frac{\xi}{\xi} \dot{t}_{ij,P} + \frac{\xi - \xi}{1 - \xi} \dot{t}_{ij,P} & \frac{\xi}{\xi} \leq \dot{t}_{ij,P} < 1 \text{ (CDS)} \\ \dot{t}_{ij,P} & \text{elsewhere (UDS)} \end{cases} \tag{9} \]

A bit of algebra shows that the convective flux in the stress equation, given by MINMOD, is

\[\frac{\lambda}{\rho} F_f \dot{t}_{ij,f} = \frac{\lambda}{\rho} F_f \dot{t}_{ij,P} + \frac{\lambda}{\rho} F_f \left[a \left(\dot{t}_{ij,D} - \dot{t}_{ij,U} \right) + (b - 1) \left(\dot{t}_{ij,P} - \dot{t}_{ij,U} \right) \right] \tag{11} \]

where ^ symbolizes the stress at a cell face that needs to be calculated with an interpolating scheme appropriate for convection [1].

3.3. Solution procedure and boundary conditions

The discretised equations for each variable are solved in a sequential manner and the revised version of the SIMPLEC algorithm of Van Doormal and Raithby [15], explained in [1], is used to apply the continuity equation for coupling pressure and velocity. Neither the algorithm nor the boundary conditions are affected by the use of the high-resolution scheme.

To check for convergence, appropriate criteria was applied and the implicit solution of the linear set of equations was carried out with standard pre-conditioned conjugate gradient methods [16].

4. Flow problem

The plane flow past a circular cylinder in a channel was investigated and is represented schematically in Fig. 1. The flow has a plane of symmetry and only half of the domain needs to be calculated. The ratio of channel half-height \(h \) to cylinder radius \(R \) is equal to 2. The
computational domain is $80R$ long, with $19R$ upstream and $59R$ downstream of the forward and rear stagnation points of the cylinder, respectively. The upstream and downstream lengths of the domain were sufficiently long to avoid effects of fully-developed inlet condition on the flow in the vicinity of the cylinder and ensure a fully-developed outlet profile. All the calculations were carried out for $Re=0$. With U representing the bulk velocity in the channel, the relevant nondimensional Deborah number was defined as

$$De = \frac{\lambda U}{R}$$ \hspace{1cm} (12)

To generate the mesh the domain was divided into eight blocks as represented in Fig. 1. Within each block the cells were concentrated near the cylinder surface and the centreline in order to resolve adequately the stress boundary-layer. Five meshes with different degrees of refinement were used and their characteristics are presented in Table I. The meshes can be grouped into two sets: (M45,M90) and (M60, M120), and within each set the refinement was consistently done, ie, between consecutive meshes the number of cells was doubled in each direction, with grid spacing being approximately halved following the procedure of Ferziger and Peric [17] to enable error estimation using Richardson's extrapolation to the limit.

Table 1- Main characteristics of the meshes NS x NR

<table>
<thead>
<tr>
<th>Block</th>
<th>M45</th>
<th>M60</th>
<th>M75</th>
<th>M90</th>
<th>M120</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>38 x 36</td>
<td>50 x 48</td>
<td>62 x 60</td>
<td>75 x 72</td>
<td>100 x 96</td>
</tr>
<tr>
<td>II</td>
<td>38 x 45</td>
<td>50 x 60</td>
<td>62 x 75</td>
<td>75 x 90</td>
<td>100 x 120</td>
</tr>
<tr>
<td>III</td>
<td>19 x 45</td>
<td>25 x 60</td>
<td>31 x 75</td>
<td>38 x 90</td>
<td>50 x 120</td>
</tr>
<tr>
<td>IV</td>
<td>19 x 45</td>
<td>25 x 60</td>
<td>31 x 75</td>
<td>38 x 90</td>
<td>50 x 120</td>
</tr>
<tr>
<td>V</td>
<td>19 x 45</td>
<td>25 x 60</td>
<td>31 x 75</td>
<td>38 x 90</td>
<td>50 x 120</td>
</tr>
<tr>
<td>VI</td>
<td>19 x 45</td>
<td>25 x 60</td>
<td>31 x 75</td>
<td>38 x 90</td>
<td>50 x 120</td>
</tr>
<tr>
<td>VII</td>
<td>38 x 45</td>
<td>50 x 60</td>
<td>62 x 75</td>
<td>75 x 90</td>
<td>100 x 120</td>
</tr>
<tr>
<td>VIII</td>
<td>38 x 45</td>
<td>50 x 60</td>
<td>62 x 75</td>
<td>75 x 90</td>
<td>100 x 120</td>
</tr>
<tr>
<td>NCV</td>
<td>9918</td>
<td>17400</td>
<td>26970</td>
<td>39330</td>
<td>69600</td>
</tr>
<tr>
<td>$\left(\Delta r/R\right)_{\text{min}}$</td>
<td>0.00646</td>
<td>0.00481</td>
<td>0.00383</td>
<td>0.00318</td>
<td>0.00238</td>
</tr>
<tr>
<td>$\left(\Delta s/R\right)_{\text{min}}$</td>
<td>0.0207</td>
<td>0.0157</td>
<td>0.0127</td>
<td>0.0103</td>
<td>0.00785</td>
</tr>
</tbody>
</table>

NCV- Number of control volumes.

*Smallest cell all around the cylinder surface

Figure 1- Schematic representation of the flow geometry and definition of the blocks used to generate the mesh ($X=x/R$), where R is cylinder radius. Flow is from left to right.
5. Results and discussion

Results of the computations are presented in two ways: a scalar integral quantity representative of the flow, and detailed profiles of velocities and stress components in the vicinity of the cylinder. The integral quantity is the dimensionless drag force C_d resulting from the surface integration of the normalised stress τ' and pressure p' via

$$C_d = \int_\Omega (\tau' - p'I) \hat{i} dS$$ \hspace{1cm} (13)

where I is the identity tensor, \hat{i} is the unit vector in the x-direction and the superscript ' indicates that the stress tensor and pressure were normalised by $\eta U/R$.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>132.23 132.32 132.36 132.36 132.36</td>
</tr>
<tr>
<td>0.1</td>
<td>126.799 127.141 127.483 127.41 127.42</td>
</tr>
<tr>
<td>0.2</td>
<td>117.077 117.485 117.893</td>
</tr>
<tr>
<td>0.3</td>
<td>107.806 108.043 108.178 108.264 108.395</td>
</tr>
<tr>
<td>0.4</td>
<td>101.134 101.300 101.466</td>
</tr>
<tr>
<td>0.5</td>
<td>96.390 96.275 96.160</td>
</tr>
<tr>
<td>0.6</td>
<td>93.467 92.970 92.473</td>
</tr>
<tr>
<td>0.7</td>
<td>91.973 90.995 90.017</td>
</tr>
<tr>
<td>0.8</td>
<td>89.857 89.799 89.780 89.79 89.84</td>
</tr>
<tr>
<td>0.9</td>
<td>87.850 87.585 87.452 87.373 87.277 87.174</td>
</tr>
<tr>
<td>1.0</td>
<td>93.063 92.092 91.221 90.581 89.856 87.683</td>
</tr>
<tr>
<td>1.1</td>
<td>94.630 94.630</td>
</tr>
<tr>
<td>1.3</td>
<td>98.942</td>
</tr>
<tr>
<td>1.5</td>
<td>104.575</td>
</tr>
</tbody>
</table>

Correct predictions of integral quantities are not synonymous of accurate predictions of the velocity and stress fields, because local variations of those quantities may compensate each other. Therefore, in order to ascertain the quality of the predictions velocity and stress profiles in the difficult stress boundary-layer and in the wake along the centreplane will be also shown. Both the drag force and these profiles will be compared with recent data from the literature [2].

Table 2 presents results of the drag force for all the cases that were simulated and includes extrapolated values of the drag force as well as data from the literature. For comparison purposes results obtained with the first order interpolation scheme UDS are also included.

The extrapolated data in the Table was calculated with the predictions from the M60 and M120 grids using Richardson’s technique after determination of the order of convergence of the
calculations with the different interpolation schemes. The order of convergence was obtained in two different, but related, procedures. In one of them, also used by [4], C_d was plotted as a function of the minimum grid spacing Δr and a fit of

$$C_d = C_{d,\text{extr}} + b(\Delta r)^n$$

(14)
gave the extrapolated C_d and the order of convergence n. A simpler trial-and-error method assumes that the extrapolated C_d from Richardson's technique represents the true value and plots the error $|C_d - C_{d,\text{true}}|$ as a function of Δr in log-log coordinates. The slope of this data set gives the order of convergence, as shown in Fig. 2. To estimate the true C_d the nearer integer to the calculated order of convergence was used for the Richardson technique. Using both techniques, the following values for the order of convergence were determined: 1.1 for UDS and 1.9 for MINMOD at $De = 0.3$, and 0.9 for UDS and 1.8 for MINMOD at $De = 0.9$.

Figure 2 - Error versus cell size for $De=0.9$. **Figure 3** - Difference in C_d relative to the UCM flow with MINMOD. The most recent literature results for UCM flow around a cylinder are those of [2] using the MIX1 and DEVSS finite-element formulations. Fan et al [2] claim that MIX1 is the best formulation of the two, hence the corresponding values are used as a basis for comparison of our predictions in the plots of the relative difference in Fig. 3. When MIX1 values are not available the DEVSS values of Fan et al are used instead.

Fig. 3 analyses the extrapolated and M120-grid C_d values. For $De \leq 0.5$ there is clear agreement between all predictions, although the UDS values show its lower accuracy. All the extrapolated values differ by less than 0.1% from the MIX1 results, which were also very close to the DEVSS predictions. The differences are of the order of 0.06% to 0.08% for UDS, and between 0.01% and 0.04% for MINMOD. These characteristics are confirmed in the comparisons involving the M120 grid predictions. Now, the advantages of the high-resolution
scheme becomes clear: the differences relative to MIX1 rise to 0.2% for UDS, but stay below 0.05-0.06% for MINMOD.

Within this low Deborah number range no major differences were expected between the various sets of predictions, since it is known from the literature that the various formulations are basically in agreement. However, it is important to emphasize that our predictions with the HR-scheme gives consistently lower values than the MIX1 results of Fan et al. The MIX1 results were the lowest in the literature and claimed by their authors to be the most accurate for this benchmark problem: over this Fan et al [2] casted “doubts on the reliability of the solutions that have drag forces greater than the minimum value”. The present predictions confirm those findings in an independent way and suggest that the true value of \(C_d \) may be even lower.

For higher Deborah numbers (\(De > 0.5 \)) the predictions of UDS deteriorate considerably: at \(De=0.7 \) the differences relative to MIX1 are of 0.25% and 1.3% for the extrapolated and M120 values whereas for MINMOD the differences remain at about 0.04%.

Profiles of the normalised axial velocity along the centreline and cylinder surface for Newtonian and UCM fluids are compared in Fig. 4 for different \(De \) numbers. The Newtonian flow is practically symmetric, but elasticity elongates the recovery zone. The profiles of the normalised axial normal stress at \(De=0.6 \), calculated with UDS and MINMOD in meshes M60 and M120, are plotted in Fig. 5. There is a first maximum near the narrowest part of the channel and a second at the wake, downstream of the rear stagnation point. The first maximum is lower for MINMOD and the values from both meshes are very close to each other, whereas with UDS the stresses are higher and the differences between the two meshes are larger, thus showing the better convergence of the high-resolution scheme. At the second maximum one can not distinguish differences between both MINMOD solutions and the M60 UDS curve is slightly under all the others.
Acknowledgements

PJO acknowledges support by Centro de Materiais Têxteis e Papeleiros, of UBI and MAA wishes to thank his Dep. de Eng. Química at FEUP for a temporary leave of absence.

References

Complete references

