Bifurcation phenomena in strong extensional flows
(in a cross-slot geometry)

F. A. Cruz1,*, R. J. Poole2, F. T. Pinho3, P.J. Oliveira4, M. A. Alves1

1 Departamento de Engenharia Química, CEFT, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
2 School of Engineering, University of Liverpool, Brownlow Street, Liverpool, L69 3GH United Kingdom
3 CEFT, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
4 Departamento de Engenharia Electromecânica, Materiais Têxteis e Papeleiros, Universidade da Beira Interior, 6201-001 Covilhã, Research Unit CEFT, Portugal
Outline

• Motivation
• Governing equations and numerical methods
• Results:
 – Weissenberg number Wi_o at the stagnation point
 – Couette correction C
 – Asymmetry parameter DQ

• Discussion:
 – Stability
Motivation – Why the cross-slot?

- Strong extensional nature and free stagnation point
- Steady-state flow asymmetries at negligible Reynolds number
- Time-dependent flow for higher Deborah number

Earlier observations: Gardner et al., Polymer. 23 (1982) 1435–1442.
Motivation – Goals

• Accurate benchmark data:
 – Upper-Convected Maxwell (UCM) model
 – Oldroyd-B model
 – Simplified linear Phan-Thien-Than (sPTT) model

• Mechanism of Bifurcation:
 – Application of criteria developed to predict the onset of time-dependent instabilities
Governing equations

- Inertialess \((Re \to 0)\), isothermal, incompressible flow.

 - Conservation of mass: \(\nabla \cdot \mathbf{u} = 0\)

 - Conservation of momentum:
 \[-\nabla p + \nabla \cdot \tau + \beta \eta_o \nabla^2 \mathbf{u} = 0\]
 \[
 \beta = \frac{\eta_s}{\eta_s + \eta_p}
 \]

 - Constitutive equation (sPTT model):
 \[
 \left(1 + \frac{\lambda \varepsilon}{(1 - \beta) \eta_o} \text{Tr}(\tau)\right) \tau + \lambda \left[\frac{\partial \tau}{\partial t} + \nabla \cdot \mathbf{u} \tau\right] = (1 - \beta) \eta_o \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T\right) + \lambda \left(\tau \cdot \nabla \mathbf{u} + \nabla \mathbf{u}^T \cdot \tau\right)
 \]

 UCM or Oldroyd-B model for \(\varepsilon=0\)
Geometry
Numerical methods

• Fully implicit finite volume method (Oliveira et al., 1998)
 – Structured, collocated and non-orthogonal meshes
 – Time-marching algorithm
 – Diffusive terms: central differences scheme (CDS)

 – Advective terms, high resolution scheme: CUBISTA (Alves et al., 2003)

 – Log-conformation technique for polymeric stress tensor
 (Afonso et al., 2009)
Richardson extrapolation

- Given three meshes with cell spacing h, $2h$ and $4h$, for variable φ,

\[
\ln \left(\frac{\varphi_{2h} - \varphi_{4h}}{\varphi_{h} - \varphi_{2h}} \right) = \frac{2^p \varphi_{h} - \varphi_{2h}}{2^p - 1}
\]

order of convergence

extrapolated value
Meshes

<table>
<thead>
<tr>
<th>Mesh</th>
<th>NC</th>
<th>DOF</th>
<th>$\frac{\Delta x_{\text{min}}}{D}$</th>
<th>$\frac{\Delta y_{\text{min}}}{D}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>12801</td>
<td>76806</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td>50601</td>
<td>303606</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>201201</td>
<td>1207206</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>
Bifurcation – UCM model
Streamlines superimposed onto contour plots of N_1

$D_e = 0.31$
Steady symmetry

$D_e = 0.315$
Steady asymmetry

$D_e = 0.33$
Prior to unsteady flow

$N_1 / (\eta U / D)$

The Society of Rheology 85th Annual Meeting, October 13-17, Montréal, Canada
Bifurcation – Oldroyd-B model ($\beta=1/9$)
Streamlines superimposed onto contour plots of N_1

$De=0.36$
Steady symmetry

$De=0.37$
Steady asymmetry

$De=0.42$
Prior to unsteady flow
Bifurcation – sPTT model ($\beta=1/9$, $\varepsilon=0.02$)
Streamlines superimposed onto contour plots of N_1

$De=0.5$
Steady symmetry

$De=0.51$
Steady asymmetry

$De=0.9$
Prior to unsteady flow

$N_1/(\eta_0 U/D)$
Mesh-wise convergence
Demonstration with Wi_o

$Wi_o = \lambda \dot{\epsilon}_o$

sPTT model ($\beta = 1/9, \varepsilon = 0.02$)
Results

Weissenberg number Wi_o at the stagnation point

$Wi_o \downarrow$

\Rightarrow polymer relaxes

\Rightarrow stress is relieved

(Oliveira et al., 2009)

No bifurcation without sufficiently high stress

(Xi and Graham, 2009)

(Afonso et al., 2010)

Afonso et al., J Non-Newton Fluid. 165 (2010) 743–751
Results – Couette Correction

Bifurcation

$C \downarrow$

\Rightarrow Lower energy dissipation

(Poole et al., 2007)
(Oliveira et al., 2009)
(Afonso et al., 2010)

$C \equiv \frac{\Delta p - \Delta p_{fd}}{2\tau_w}$

Results – Asymmetry Parameter DQ

\[DQ = \frac{q_2 - q_1}{q_1 + q_2} \]

Supercritical Pitchfork Bifurcation

Locally, \[DQ = A \sqrt{De - De_{CR}} \]

\[A = A(\varepsilon) \]

\[De_{CR} = De_{CR}(\beta, \varepsilon) \]

(Rocha et al., 2009)

Discussion – Stability

- Effects of bifurcation
 - Stress is relieved
 - Pressure drop decreases

- => Greater stability

- Confirmation: analysis of bifurcation using instability criteria
 - M number (McKinley et al., 1996)
 - K number (Dou and Phan-Thien, 2008)

Discussion – M number

\[M = \left[\frac{\lambda U}{R} \frac{\tau_{ss}}{\eta_o \dot{\gamma}} \right]^{1/2} \]

Radial stress is generated if polymer molecules are displaced by disturbances.

(Pakdel and McKinley, 1996)

sPTT
\[\beta = \frac{1}{9} \]
\[\varepsilon = 0.02 \]

\[{\text{De}} = 0.3 \]
\[{\text{De}} = 0.5 \]

M number definition: McKinley et al., J Non-Newton Fluid. 67 (1996) 19-47.

First description of mechanism: Larson et al., J Fluid Mech 218 (1990) 573-600.

The Society of Rheology 85th Annual Meeting, October 13-17, Montréal, Canada 18
Discussion – M number

sPTT, $\beta=1/9$, $\varepsilon=0.02$

According to M, no unstable regions near the stagnation point or birefringence strand => M number fails to predict bifurcation
Discussion – K number

\[K = \left| \frac{\partial E}{\partial n} \right| \approx \left| \frac{\partial p}{\partial n} \right| = \left| \frac{\partial p}{\partial x} + \frac{\partial p}{\partial y} \right| \]

Disturbances are amplified if the transverse energy gradient is large relative to the streamwise energy gradient.

\[sPTT, \beta = 1/9, \varepsilon = 0.02 \]

\[De = 0.3 \quad De = 0.5 \]

The Society of Rheology 85th Annual Meeting, October 13-17, Montréal, Canada 20
Discussion – K number

$sPTT, \beta=1/9, \varepsilon=0.02$

According to K, the birefringence strand tends to instability only after bifurcation

\Rightarrow K number fails to predict bifurcation
Conclusion

• Bifurcation improves stability.
 – Stress is relieved, pressure drop is minimized.

• Instability criteria fail to predict bifurcation.
 – Both the M and K numbers provide no indication that bifurcation is about to occur.

• => The two known types of elastic instability, steady bifurcation and time-dependent flow, apparently do not share a common cause.
Acknowledgements

European Research Council
Established by the European Commission
(Grant Agreement n. 307499)

Thank you for your attention!