Optimal Singular Value Decomposition Based Big Data Compression Approach in Smart Grids

Seyed Naser Hashemipour, Jamshid Aghaei, Senior Member, IEEE, Abdullah Kavousi-fard, Taher Niknam, Ladan Salimi, Pedro Crespo del Granado, Miadreza Shafie-khah, Senior Member, IEEE, Fei Wang, Senior Member, IEEE, João P. S. Catalão, Senior Member, IEEE

Abstract—The smart grid is a fully automatic delivery grid for electricity power with a two-way reliable flow of electricity and information among different equipment on the grid. Smart meters and sensors monitoring the system provide a huge amount of data in various part of smart grid. To logically manage this trouble, a new lossy data compression approach for big data compression is proposed. The optimal singular value decomposition (OSVD) is applied to a matrix that achieves the optimal number of singular values to the sending process, and the other ones will be neglected. This goal is done due to the quality of retrieved data and the compression ratio. In the presented scheme, to implementation of the optimization framework, various intelligent optimization methods are used to determine the number of optimal values in the elimination stage. The efficacy and capabilities of the proposed method are examined using a wide range of data types, from electricity market data to image processing benchmarks. The comparisons show that the compression level obtained by the proposed method can dominate the points given by the existing SVD rank reduction methods. Also, as the other finding of the paper, the performance of the rank reduction methods depends on the application and data types. It means that a rank reduction method can reveal a good performance in one application and performs unacceptably for another purpose. So, the optimized rank reduction can pave the way toward a robust and reliable performance.

Keywords—Big data, Data compression, Smart Grid, Optimization, Singular value decomposition.

NOMENCLATURE

- \(A \) — Original data
- \(\hat{A} \) — Reconstructed data
- \(C_r \) — Compression ratio
- \(D_r \) — Elements of remained data
- \(D_d \) — Elements of deleted data
- \(G_{\text{GA}} \) — Genetic Algorithm with mutation
- \(m \) — Rows of the original matrix
- \(n \) — Columns of the original matrix
- \(N_t \) — The threshold of euclidean norm for comparison of original and retrieved data
- \(N_{Z_2}(Z) \) — Euclidean norm of matrix \(Z \)
- \(p \) — The number of deleted singular values
- \(S_d \) — Number of deleted singular values
- \(\alpha \) — Weight coefficient for \(N_t \)

I. INTRODUCTION

A. Data in Smart Grids

The smart grid is an intelligent electricity grid that optimizes the generation, distribution, and consumption of electricity through the introduction of Information and Communication Technologies on the electricity grid that includes smart meters and various sensors in different parts. The measurement and monitoring instruments to gathering the information in the transmission system and medium-voltage level distribution system are managed by supervisory control and data acquisition (SCADA) and wide-area monitoring system (WAMS). Similarly, in the level of consumers, advanced metering infrastructure (AMI) and automatic meter reading (AMR) systems are employed for data gathering in the smart grid. Phasor measurement units (PMUs) are among the other units used in the smart grid to measure the required information and send it through a communications platform.

Fig. 1 shows the general structure of the WAMS system in the smart grid. Information for each PMU is transmitted through
public switched telephone networks, fiber optic cables, low altitude satellites, power line carriers (PLCs), or microwave links. As a result, a huge amount of multi-source varied data is stored in the smart grids. These data, if exploited properly, can reveal much information about the customers and generating units and improve the power quality and smart grid efficiency. A challenge in this way is the huge volume of the transmitted information and the limited bandwidth for the data transfer. In this situation, data compression techniques can bring great benefit to the smart grid. In compression methods, the initial goal is to reduce the data size. But, it can happen as long as the compressed data contain the main features of the original information [1]. Data compression is broadly classified into two categories of lossless and lossy [2], and various researchers are actively engaged to propose efficient methods of data compression. The following subsections review the important techniques that are being used commonly in data compression.

B. Literature Review

Different lossy compression schemes have been developed for smart grid applications based on wavelet decomposition (WD) [3-6], discrete cosine transform (DCT) [7], fuzzy-based methods [8], compressed sensing theory [9], and SVD-based approaches [10-15]. There also is ongoing research on spatial domain methods like neural network-based methods [16-17] and Deep Stacked Auto-Encoders [18]. Also, different methods of lossless compression for data compression applications have been emerged [19-20].

Khan et al. [3] have introduced a novel method for simultaneous signal compression and de-noising in smart grids. According to [3], the wavelet packet decomposition (WPD) is more accurate than wavelet decomposition. In this method, the WD tree has been converted to a fully binary tree using a cost function, and the best tree has been selected from several WPD bases. Besides, reconstruction of a noisy signal can easily be done by setting a threshold. This work provides an acceptable compression ratio and a good de-noising tool for signals. Ning et al. [4] have suggested another compression technique using wavelet transform (WT) and multi-resolution analysis (MRA). In the decomposition process, the Daubechies filter is considered as the mother signal. Experimental results illustrate that the WT-MRI can only deal with the white noise of the signals and cannot compress the data adequately. So it must be combined with other algorithms. Also, Khan et al. [5] presented an approach based on embedded zero tree wavelet transform (EZWT) that depresses the noisy elements of the grid signals. Since EZWT does not require tables and codebooks for signal recovery, it is a simple and efficient method. EZWT allows to carry out both compression and de-noising of the PMU and power system data. A similar approach in [6] with the wavelet decomposition has been deployed for signal compression. In this method, after performing wavelet packet, dynamic bit allocation is carried out by calculating the neural shape estimator (NSE) to estimate the spectral shape that is necessary to eliminate data redundancy and implementing the entropy coding. The results showed that NSE is more successful than the other estimators that provide an acceptable ratio for compression of waveforms. Gadde et al. [7] have presented a cascade technique in PMU data compression using intrinsic correlation that discovers spatial and temporal redundancies. In this work, the principal component analysis is defined. Then, a discrete cosine transform associated with each component is modeled. The required compression parameters have been adjusted using efficient statistical techniques. The results show that this approach can be employed for a phasor data concentrators (PDC) fed from any number of PMUs. A research in [8] suggested fuzzy-based approaches to save the required memory and bandwidth, which reduces the computational burden for smart grid data analysis. Some works using compressed sensing theory for smart grid applications have been developed, such as reference [9] that provided the compression technique for electricity datasets. At the decoder side, an iterative threshold algorithm has been employed to reconstruct the compressed bitstream. A good performance for both compression/decompression of the considered data was concluded from the results. Linear algebra-based techniques such as singular value decomposition (SVD) are widely used as another tool for data compression. The main purpose of SVD-based methods is to approximate the original data with a rank reduced matrix. Many efforts [10-14] have been made on the development of data compression using SVD decomposition. de Souza et al. [10] proposed an algorithm that performs the SVD data compression on a power system dataset. The level of the compression is determined by the bottleneck of the communication links of the grid. Then, an accurate enough compression level that satisfies the bottleneck constraint is found by a trial and error procedure. A similar method based on the combination of SVD and wavelet difference reduction (WDR) is proposed in [11]. In this study, at first, the approximation of the original image is achieved through an iterative rounds of test and error, and then WDR has been applied to reduced data. Indeed, WDR has been added to the SVD decomposition to enhance the compression ratio. Thresholding techniques based on the energy information are among the SVD rank reduction methods. Padhy et al. [12] selected a thresholding technique based on multiscale root fractional energy contribution (MRFEC) of the singular values to reduce the dimensionality of orthogonal and singular value matrices for ECG compression. In this manner, at first, DWT is applied to the original matrix. Then energy variations in different sub-bands are calculated. The singular values of each sub-band that are greater than the threshold are retained. Dixit et al. [13] have worked on SVD-DCT based compression of images. In this paper, the authors test the quality of the image

Figure 1. WAMS structure in a smart grid
with different ranks between 70 to 150 and make a tradeoff between the quality and the compression. Yu et al. [14] presented a lossy Compression image based on SVD. Their approach to select the rank of the image is similar to [13], but in the range between 10 to 200. Mukhopadhyay et al. [15] have worked on Biosignals compression algorithm using a combination of downsampling, SVD, and ASCII compression method.

In the spatial domain, artificial intelligence-based methods like neural networks [16] and intelligent measurement techniques [17] have also been used in recent years. Barrosa et al. [16] has proposed a compression method based on genetic algorithm (GA) and neural network (NN) for electrical power signals. The GA is used to select the best samples of the signal, and then NN is deployed to compress of remained samples and reconstruction the signal. The rate of compression is 2.5% to 10% for an installed recorder in a 230-kV electrical power system. In [17], an approach has been suggested for the compression of electricity load data. Based on the intelligent measurement. As another application of compression in the electrical load dataset, reference [18] provided a technique based on Deep Stacked Auto-Encoders.

In addition to the compression application, SVD based approximation is used in other areas such as noise reduction [21-23], image reconstruction [24], Shot boundary detection in the video [25], and simultaneous compression and de-noising [26]. In several SVD-based rank reduction research like [10], [11], [13-15], the number of singular values that contain the main information of the matrix is determined in a trial and error procedure. It means that the operator starts with an initial guess for the number of singular values to retain. If it is good enough, this guess is chosen. Otherwise, it should be changed to get a better solution. It is worth noting that the knee point in the singular value diagram can be considered as a good starting point. In addition to these approaches, there are some methodologies such as the Guttman-Kaiser criterion [26, 27], Cattell’s Scree test [26], and entropy-based methods [28] to determine rank of the truncated SVD. In the first method of the Guttman-Kaiser criterion, all singular values smaller than one are ignored. The second method of the Guttman-Kaiser criterion keeps enough number of singular values such that the squared summation of them covers 90 percent of the squared sum of all of the singular values. Both of these methods are based on arbitrary thresholds. The Scree test is a subjective decision on the rank based on the shape of the scree plot. Indeed, the operator can determine an appropriate matrix rank based on the knee point in the singular value diagram. But, in some data types, the SV curve may be non-convex (more than a knee region) and it can be more challenging to decide between various knee points. In Entropy based methods, relative contribution of singular values determines the rank of the matrix.

In noise reduction, some of the singular values with greater energy have been kept and the other ones are considered as noisy singular values [21]. For example, Liu et al. [22] presented an SVD based de-noising system that removes noisy elements from the data by rank reduction of the original matrix in the frequency domain based on the screen test method. Image reconstruction by inpainting is a popular area of research. The damaged region of the image is constructed by the rank reduced approximation of the main image. Here again, decision making about the proper rank of the image becomes a matter of controversy. The authors in [24] determine the matrix rank according to the structural similarity index (SSIM). Indeed, they try to find a good enough matrix rank that keeps the SSIM higher than a prespecified value. The rank reduction based on the second method of Guttman-Kaiser is employed by Fedwa et al. [25] for the feature extraction in video shot boundary detection. Schanze et al. [26] divided the original data into two parts of useful and noisy elements to do compression and de-noising, simultaneously. Determining the proper cut-off number of k that is the threshold to data division was the main challenge there. The Scree was employed to deal with this problem.

II. COMPRESSION IN SMART GRIDS

The generation, transmission, and distribution of power in smart power systems are deeply impressed by data analysis. Therefore, a considerable increase in data exchange and the required memory is likely to occur, and the required data storage and bandwidth of the communication links in the smart grids have a growing trend. Besides, to obtain accurate and real-time information of the smart grid, the frequency of sampling should be increased. Accordingly, the importance of data compression in the smart grid will be more highlighted. The proposed compression method is presented in the following. This method can be employed effectively in different points of the grid where the volume of the sent and received data is high.

A. The SVD Decomposition

The SVD is a computational tool for approximating a matrix by three other matrices. Indeed, it decomposes the matrix A into U, V, and Σ. Let’s assume m and n be arbitrary, and A is a matrix. A singular value decomposition of A is a factorization, as can be seen in (1).

$$A = U \Sigma V^T$$ \hspace{1cm} (1)

where U is a $m \times m$ real or complex unitary matrix, Σ is a $m \times n$ rectangular diagonal matrix with non-negative real numbers on the diagonal, and V is a $n \times n$ real or complex unitary matrix. The diagonal entries σ_i of Σ are known as the singular values of A. briefly [29]:

- U: is $m \times m$ unitary (the left singular vectors of A)
- V: is $n \times n$ unitary (the right singular vectors of A)
- Σ: is $m \times n$ diagonal (the singular values of A)
where,
\[\Sigma_{(m \times n)} = \text{diag}(\sigma_1, \ldots, \sigma_n) \text{ with } \sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n \geq 0 \]

In Fig. 2, the SVD decomposition on a matrix has been illustrated. As already mentioned, \(\Sigma \) is a diagonal matrix whose elements on its original diameter are singular values that are placed in descending order. Each singular value is involved in the retrieving process of the original matrix. In other words, equation (1) can be rewritten in the form of equation (2) [29].

\[A = \sum_{i=1}^{m} u_i \sigma_i v_i^T \]

(2)

Where \(u_i \) and \(v_i \) are the left and right singular vectors of the matrix \(A \), respectively, and \(\sigma_i \) is the \(i \)-th singular value. As can be seen, the smaller singular values play a smaller role in the building of the original data. Thus, the low-rank matrix approximation can be obtained by the elimination of the smaller values and the original information can be retrieved as can be seen in (3a). According to (3b), \(\Sigma \) is decomposed to a submatrix including the important singular values (\(\Sigma \)) and three non-important submatrices which are replaced by zero matrices with the same dimension.

\[\tilde{A} = \mathcal{U} \Sigma \mathcal{F}^T \]

(3a)

\[\Sigma = \begin{bmatrix} \Sigma_{(n-p) \times (n-p)} & 0_{(n-p) \times p} \\ 0_{(n-p) \times (n-p)} & 0_{(n-p) \times p} \end{bmatrix} \]

\[\mathcal{U} = [\tilde{U} \; \tilde{U} \tilde{V} \tilde{V}] \]

\[\mathcal{F} = \begin{bmatrix} \tilde{U} \tilde{V} \\ \tilde{U} \tilde{V} \end{bmatrix} \]

(3b)

As can be seen in (4), \(\tilde{A} \) is a low ranked approximation \(m \times n \) matrix, the matrix \(\tilde{U} \) is \(m \times (n-p) \), \(\tilde{F} \) is \(n \times (n-p) \), and \(\Sigma \) is \((n-p) \times (n-p) \).

\[A_{\text{approx}} = [\tilde{U} \tilde{V}] \begin{bmatrix} \Sigma_{(n-p) \times (n-p)} & 0_{(n-p) \times p} \\ 0_{(n-p) \times (n-p)} & 0_{(n-p) \times p} \end{bmatrix} [\tilde{U} \tilde{V}]^T \]

(4)

Since \(\tilde{U} \), \(\tilde{F} \) and \(\tilde{\Sigma} \) can provide an acceptable approximation of the original data \(A \) and can be sent instead of \(A \), their dimension specifies the compression ratio. Therefore, the compression ratio is defined as (5).

\[C_r = \frac{m \times n}{(n-p)(m+n+1)} \]

(5)

The compression is done when the ratio is more than 1. Equations (6)-(8) provide a lower bound on the number of neglected singular values.

\[\frac{m \times n}{(n-p)(m+n+1)} > 1 \]

(6)

\[(n-p) < \frac{m \times n}{(m+n+1)} \]

(7)

Along with the compression ratio, the redundancy of data can also be calculated by equation (9).

\[\%R = 1 - \frac{1}{C_r} \]

(9)

In this process, according to (4) we have:

\[C_r = \frac{D_r}{D_s} = \frac{D_s + D_s}{D_s} \Rightarrow C_r = 1 + \frac{D_s}{D_s} \Rightarrow D_s = D_s(C_r - 1) \]

(10)

To find the redundant data, both sides of (10) is divided by the original data, so:

\[R = \frac{D_s}{D_s} = \frac{D_s}{D_s} \times (C_r - 1) \Rightarrow R\% = \left(1 - \frac{1}{C_r} \right) \times 100 \]

(11)

Therefore, the percentage of redundant data is calculated by (11).

Another important issue refers to the calculation of the retrieved data precision in the decoding process. The euclidean norm criterias in (12) has been used to check the accuracy and proximity between original and retrieved data. Of course, it can be replaced by other measures like mean square error.

\[N_r(A) = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} (a_{ij} - \tilde{a}_{ij})^2} \]

(12)

B. Optimization Framework

Determining the number of singular values to retain can significantly affect the performance of the SVD-based data compressions. The more singular values would lead to more accuracy, and of course, less compression ratio. As mentioned in the literature review, there are various SVD rank reduction methods. Here, the proposed method presents the optimal SVD rank reduction that maximizes the compression ratio, subject to the accuracy constraint. Before explaining the optimal singular value decomposition in section III, the general form of an optimization problem that can be seen in (13) is reviewed.

\[\min_F(X) \]

\[s.t. \quad H(X) = 0 \quad G(X) \leq 0 \]

(13)

Where \(F \) is the objective function, \(X \) is the set of decision variables, \(H \) is the equality constraints, and \(G \) represents the in-equality constraints [30, 31]. Taking the feasible region of the problem into account, the minimization problem aims to find the optimal point which satisfies (14).

\[\forall x \in X \Rightarrow F(x') \leq F(x) \]

(14)

Based on Eq. (14), the point given by the proposed method dominates the other points in the feasible region. Evolutionary algorithms have been used to solve the formulated optimization problem [32, 33].

III. PROPOSED METHOD

As mentioned, data exchange between various regions of the smart grid is happening increasingly. The PMU data, bids,
for optimal, resilient, and reliable operation are among the most omnipresent examples of data production and exchange. Generally, the data exchange process is divided into encoding and decoding phases. In fact, in the encoding stage, data gets prepared for transmission by some processes. After this operation, the data is transmitted through the communication channel and will be recovered to the initial form in the decoding phase. This process is shown in Fig. 3.

In the proposed method, the original data matrix is decomposed into U, V, and Σ by the SVD decomposition. Then, the optimal rank reduction is specified and three rank-reduced matrices will be ready to be sent. The decision variable (x) in this problem is the number of singular values that will be eliminated. In fact, the number of eliminated singular values influences the compression ratio and data quality. Since the main goal of the problem is data compression, the inverse of the compression ratio in (15) can be considered as the objective function in a minimization problem.

$$F(x) = \frac{1}{C_r(x)} = \frac{(n-x)(m+n+1)}{m \times n}$$

By minimizing (15), the compression ratio will be maximized. Alternatively, the objective function can be replaced by minus x, as can be seen in (16). Indeed, more compression ratio can be gained by maximizing the number of neglected singular values.

$$F(x) = -x$$

As an important consideration, the compression is valuable if the information can be retrieved with an acceptable accuracy. Therefore, constraint (17) reinforces the proximity of two matrices with euclidean norm criteria. In other words, introducing (17) indicates the euclidean norm of the difference between the original and recovered matrix is less than the N_f value.

$$N_f (A - \overline{A}) \leq N_f$$

In this step, an important issue refers to determining the upper bound of the constraint ($M\sigma$). N_f can be determined based on the matrix A as can be seen in (18). In this way, we will have a better insight into this threshold. In this regard, the upper bound of (17) is restricted to a fraction of the euclidean norm of the original matrix.

$$N_f = \alpha \times N_f (A)$$

To convert a constrained minimization problem to an unconstrained one, the objective function can be penalized for any violation of the constraint. Accordingly, the fitness function is calculated as (19).

$$fit = F(x) + K \times \max \{0, N_f (A - \overline{A}) - N_f\}$$

Where K is the penalty coefficient.

As mentioned, the number of singular values ignored is the decision variable. So, x can change between the lower bound based on (20) and the upper bound that is the total number of the singular values.

$$x > n - \frac{m \times n}{(m+n+1)} \Rightarrow x_{min} = \text{round} \left(n - \frac{m \times n}{(m+n+1)} \right) + 1$$

In some cases, the communication network bottlenecks play the main role in determining the compression ratio [10]. So, the lower bound expression can be modified based on the communication network requirements, as is seen in (21) and (22).

$$\frac{m \times n}{(n-x)(m+n+1)} > cr_0$$

$$x > n - \frac{1}{cr_0} \frac{m \times n}{(m+n+1)}$$

Where cr_0 is the required compression ratio that is determined based on the communication network status.

To sum up, minimizing the objective function (16), subject to the constraints (17) and (22), returns the optimal number of singular values to retain. It’s worth noting that the proposed optimization framework contains one decision variable (x) regardless of the dimension of the original data. Besides, the proposed optimization is applied to the output of the SVD decomposition. It means that before the algorithm starts, the SVD decomposition should be applied to the original data. Then, the proposed method optimizes the compression ratio using simple operations like the multiplication of the U, V, and Σ. As a result, it can be solved by the existing heuristic optimization algorithms efficiently.
IV. NUMERICAL RESULTS AND DISCUSSIONS

Various datasets are employed to demonstrate the effectiveness of the proposed method. At first, a data matrix is employed to investigate the performance of the existing heuristic algorithms in solving the defined optimization problem (*Case 1*). In this case, a dataset from Day-Ahead Energy Market of New England’s wholesale electricity marketplace on January 1, 2018, for 315 participants has been tested. It should be noted that each agent must send the 5-segment (price-power curve) for 24-hour. Hence, the matrix has 315 rows (equal to the number of market participants) and 240 columns (5 segments of power and 5 segments of the price for 24 hours). This dataset is available in [34]. After this case, the proposed methodology is compared with the first and second methods of Guttmann-Kaiser rank reduction [26, 27] as well as the proposed method by de Souza et al. [10] to analyze the accuracy and optimality of the algorithm. Also, the knee point on the singular value diagram is considered as another potential point in the comparisons. To this end, a variety of data types such as energy consumption and renewable production of 80 houses in the UK [35, 36] for nine months with half an hour time-step (*Case 2*) and the electrical data over a single 24-hour period from 443 unique houses on February 4, 2011 [37] (*Case 3*) are selected. Moreover, some of the known image processing benchmarks like Lena and Cameraman images [38] (*Case 4*) are added to the comparison cases to cover more data types and have more concrete results. The presented scheme has been implemented using MATLAB 2018a on the market data. All implementations have been done on a PC Intel core i7 processor 1.8 GHz, with 8GB RAM.

A. Case 1:

Differential evolution (DE) [39], simulated annealing (SA) [40], teaching learning based optimization (TLBO) [41], particle swarm optimization (PSO) [42], as well as the genetic algorithm with and without the mutation (GA-M and GA) [43] are employed to investigate the ability of the existing evolutionary algorithms in solving the proposed optimization framework. Table I shows the average of the obtained objective function over twenty runs. As can be seen, except for the genetic algorithm, all other algorithms could converge to the optimal solution (or very close to the optimal solution) with zero standard deviation that implies the robustness of the algorithms. The number of iterations in each run and the corresponding run-time are shown in this table, as well. According to this table, PSO is the fastest algorithm that can find the optimal solution among all algorithms used in this case study. Along with PSO, TLBO converges to the optimal solution with a robust performance. DE is an element-wise algorithm and usually needs higher iterations to converge the optimal solution. So, it most probably reaches the exact optimal solution with high enough iterations. But it converges to a quite close point to the global optima with 14 iterations. It also is seen that the optimization framework even can be solved with a local search algorithm like SA. Genetic algorithm is the only one that does not provide as satisfying results as the others. But, its performance surges with introducing the mutation operator to this algorithm and converges to the global solution like PSO and TLBO.

Table II shows the compression ratio and the percentage of redundant data for the obtained solution by each algorithm. Of course, the algorithms with the same objective value propose the same compression ratio. According to the percentage of redundant data in this table, solving the proposed optimization framework leads to a considerable compression of data. But, the goal of this case study is to check the solvability of the proposed optimization problem. The quality of the compression scheme is evaluated in the next cases through comparisons with the other rank reduction methods.

B. Case 2:

Since equation (17) constrains the recovering error of the data compression, three related cases to α that determines the Nt are addressed, as are shown in fig. 4 (a) to (c). In the first case, it is assumed that the maximum tolerable error must be lower than 0.5 percent of the euclidean norm of the original data ($\alpha=0.5\%$). The performance of various methods is illustrated in fig. 4 (a). The obtained point by the second method of the Guttmann-Kaiser corresponds to the error of 11.66 percent of the euclidean norm of the original data that is considerably higher than the tolerable error. This percentage is equal to 0.48 in the proposed method. It means that the proposed method compresses the data as much as possible concerning the maximum allowed error. It is worth noting that the first method of the Guttmann-Kaiser and the method by de Souza et al. [10] satisfy the accuracy constraint with a lower compression ratio.

1 For further information, please refer to http://www.soda-pro.com/webservices/radiation/helium3-3-archives-for-free and https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.

If we move on to the second one with $\alpha = 5\%$, the proposed method increases the compression ratio, as can be seen in fig. 4 (b). This point is equivalent to $\alpha = 4.99\%$. It means that if one more singular value is eliminated, the error goes above the prespecified value. However, the solutions given by the other methods remain unchanged. In the third case, if we are very strict with the accuracy of the recovered data and, for instance, set $\alpha = 0.01\%$, the proposed method suggests the same point that is obtained by the first method of the Guttman-Kaiser. Of course, it might be different in other case studies. This feature enhances the flexibility of the proposed method.

The performance of the SVD-based data compression can be affected by the data type. For example, two matrices of the same size may require a different number of SVs to meet the same error threshold, depending on the dependency of the rows or columns of the matrices. Therefore, to cover various data types and have a concrete conclusion, more comparisons on three other case studies are presented in the following. The first one covers the different features of each home in a micro-grid for a 24 hours period. The size of the database is 1440 × 443 and is available in [37]. The next two are selected from the image processing benchmarks, as they might have different characteristics or different applications from the power system data.

C. Case 3:

When the rows of the matrix are dependent, or there is a correlation between them, decision making gets more complicated. In these cases, most of the SVs have small values, and suddenly after a knee point, their value increases sharply. In this situation, it is a challenging problem to determine the number of singular values to retain, based on the methods that do not react to the accuracy constraint. Because there is a huge chance for compression due to the significant number of small singular values. On the other hand, the recovering error caused by ignoring the SVs might be out of the acceptable range after a point far from the knee point in the singular values diagram. Figure 5 (a) and (b) illustrate the importance of the proposed method in this situation. In some rank reduction applications, it is suggested to retain the singular values that are bigger than the knee point that is shown by yellow triangular in Fig. 5 (a) and (b). It should be noted that the reconstruction error of the data at this point is 4 percent. This error can lead to a significant change in the recovered data. On the other side of the SV graphs of Fig. (a) and (b), there are the points proposed by the first method of the Guttman-Kaiser and de Souza et al. They provide good accuracy. But, they do not compress the data when still there is a good error margin. The other issue about the first method of Guttman-Kaiser is that the point by this method violates the lower bound of the ignored SVs as introduced in (22). According to this equation, at least 105 singular values must be ignored to have a compression ratio higher than one ($CR_0 = 1, n=1440, m=443$). Therefore, this method might be a good choice for other applications of SVD rank reduction like data de-noising. Similar to the previous case study, the proposed method maximizes the compression ratio within the feasible region of the problem. Figure 5 (a) and (b) represent the optimal points of the proposed method with $\alpha = 0.0001$ and $\alpha = 0.001$, respectively. Since the matrix is too big to show, Table III provides a comparison of four elements of the data (small to large) in compression levels obtained by various methods. The proposed answers by the first method of Guttman-Kaiser, de Souza et al. [10] and the proposed method are accurate and satisfy the accuracy constraint. However, the compression ratio of the proposed method is higher than the other ones. As long as the accuracy constraint is satisfied, the higher compression ratio is preferred. Accordingly, the proposed method dominates the other
methods in this case study, as well. It should be noted that the accuracy constraint can be set according to the applications. So, in the case with higher accuracy requirements, the upper bound in (17) can be set to a new threshold. Also, Table III shows that the knee point doesn't provide an accurate compression level in this case. However, it may reveal a good performance in image compression applications. It is investigated in the next case on two images shown in fig. 6 (a) and (b).

D. Case 4:

The performance of various algorithms, as well as the proposed method on each image, can be seen in the subplot below it. The quality of the obtained points with various methods can be analyzed similarly to the previous cases. Here, we are going to compare the performance of the proposed method in comparison to the knee point that is a popular approach in image compression. Indeed, we consider the knee as a point where the size of singular values increases rapidly. Figures 7 (a) and (b) are the compressed images based on the proposed method. Also, the compressed images based on knee point detection are shown in fig. 7 (c) and (d). As can be seen, both methods keep the main information of the images, as they are clearly visible. However, the quality of the compressed images by the proposed method is higher. After comparing the performance of the optimal rank reduction with other methods in section IV, more discussion and conclusion of the paper is presented in the next section.

V. CONCLUSION

This paper proposed an optimization formulation for the rank reduction in SVD-based data compression. The SVD-based data compression is basically a tradeoff between the data accuracy and the compression level and like any tradeoff problem, decision making plays a crucial role. In this situation, the quality of the decision can affect the efficiency and the problem. Various methods decide for the number of the singular values in rank reduction problems and some of them reveal good performance in data compression. Here, some points must be considered. Along with the data compression, there are a lot of applications for matrix rank reduction like image reconstruction [24], Shot boundary detection in videos [25], and signal de-noising [26]. Indeed, these methods are general rank reduction methods and might show acceptable performance in some applications like noise reduction. But, the objective function of the proposed method is specially designed for data compression. That’s why the proposed method provides better performance in the case studies. However, in the proposed method, the objective function can be defined according to the specific application. For instance, the compression ratio (or the equivalent function in (16)) is considered for the objective function of the data compression problem as it is discussed in this paper. An important feature of the proposed method is that the objective function can easily be changed to find the optimal rank of the matrix for other applications. So, the same implemented code for the data compression can be used for other applications. In this case, the main structure of the code remains unchanged. Replacing the objective function is the main change that is required. Along with this advantage of the optimized rank reduction, it facilitates the decision making in problems with more than one objective function by changing it to a multiobjective

<table>
<thead>
<tr>
<th>TABLE III: COMPARISON OF RANK REDUCTION METHODS ON ARBITRARY ELEMENTS OF ORIGINAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements (X,Y)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Original data</td>
</tr>
<tr>
<td>Knee point</td>
</tr>
<tr>
<td>Gutman-Kaiser (1st)</td>
</tr>
<tr>
<td>Gutman-Kaiser (2nd)</td>
</tr>
<tr>
<td>de Souza et al. [10]</td>
</tr>
<tr>
<td>Proposed method</td>
</tr>
</tbody>
</table>

Figure 6. Image processing benchmarks (a) Lena image, (b) Cameraman image, and the SV diagram and performance of the algorithms on (c) Lena image, (d) Cameraman image.
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3073640, IEEE Transactions on Industry Applications

optimization problem. This can be complicated in other methods. Besides, the results of the case studies show that the optimal points dominate the points given by the other methods. It is because the optimization problem searches for the optimal point in the feasible region. While, the other methods for example De Souza et al [10] find a good enough point, not the optimal one. As another example, the first method of Guttmann-Kaiser doesn’t compress the data and might show a good performance in the other applications of the rank reduction.

The computational complexity of the algorithm is another important issue that needs to be investigated. Generally, the computational complexity of the heuristic algorithms depends on the population, the number of the decision variables, and the number of iterations. Also, the population size is determined based on the number of decision variables. If we consider the proposed method, it contains one decision variable, regardless of the matrix size. Therefore, the computational complexity of the heuristic methods for solving the optimal rank reduction problem is proportional to the number of iterations. On the other hand, the computation complexity of the SVD decomposition implemented in Matlab is in order of O(max(m,n)2). So, the complexity of the SVD determines the complexity of the whole problem. It is because the algorithm is applied to the output of the SVD decomposition and the decomposition needs to be run before the optimization algorithm starts. Also, the other SVD-based methods at least have the complexity of the SVD decomposition. So, in terms of the computational complexity, the proposed method is in the same situation as the other SVD rank reduction algorithms are in.

The difference in the application of the data compression makes a huge difference in approaches to doing it [44]. For instance, the reconstruction error must be kept very small in power system applications. Because the error can change the schedule of the grid and impose a higher cost to it. The situation can be a bit different in image compression. The accuracy constraint can be less strict in some image processing applications, as long as the compressed image contains the main features of the original image. That is why the knee point can play a role in numerous applications of image processing. As it was seen in the results, the knee point contains very important features of the images and it is good enough in some applications. But, the same point in the market data did impose a high error to the compressed data, as is shown in Table III. In a conclusion, an optimization method that finds the optimum point regarding the accuracy constraint is required in data compression, especially for the applications that are sensitive to the error like energy market or smart grid data.

To sum up, the presented method can individually solve the issues appearing by the big volume of data such as required bandwidth and data storage by reducing the number of data elements. The proposed framework achieves the higher compression ratio as well as the satisfaction of accuracy constraint simultaneously and the redundant section is cut down. It is simple and efficient and could be utilized by market operators [45], load aggregators [46-50], electricity retailers [51-54], CHP and microgrid operation [55, 56].

Answering the question “What is the value of the optimal data compression on the grid applications like state estimation?” can be an interesting area for future research. Along with this question, providing the optimization frameworks for the other data compression methods like Discrete Cosine Transformation (DCT) or Discrete Wavelet transformation (DWT) is another area that the authors are going to investigate in the future.

REFERENCES

