Optimal Bidding Strategy of an Aggregator Based on Customers’ Responsiveness Behaviors Modeling

Xiaoxing Lu, Kangping Li, Fei Wang, Zhao Zhen
Department of Electrical Engineering
North China Electric Power University
Baoding 071003, China
feiwang@ncepu.edu.cn

Miadreza Shafie-khah
School of Technology and Innovations
University of Vaasa
Vaasa 65200, Finland
msafiek@univaasa.fi

Jingang Lai
E.ON Energy Research Center
RWTH Aachen University
Aachen 52074, Germany
jinganglai@126.com

João P. S. Catalão
Faculty of Engineering of the University of Porto
and INESC TEC
Porto 4200-465, Portugal
catalao@fe.up.pt

Abstract—Residential customers account for an indispensable part in the demand response (DR) program for their capability to provide flexibility when the system required. However, their available DR capacity has not been fully comprehended by the aggregator, who needs the information to bid accurately on behalf of the residential customers in the market transaction. To this end, this paper devised an optimal bidding strategy for the aggregator considering the bottom-up responsiveness of residential customers. Firstly, we attempt to establish the customers’ responsiveness function in relation to different incentives, during which a home energy management system (HEMS) is introduced to implement load adjustment for electrical appliances. Secondly, the function is applied to the aggregator’s decision-making process to formulate the optimal bidding strategy in the day-ahead (DA) market and the optimal scheduling scheme for the energy storage system (ESS) with the aim to maximize its own revenue. Finally, the validity of the proposed method is verified using the dataset from the Pecan Street experiment in Austin. The obtained outcome demonstrates the practical rationality of the proposed method.

Keywords—Aggregator, Bidding Strategy, Demand Response, Responsiveness modeling, Day-ahead market.

NOMENCLATURE

A. Sets and Indices
t, i, b, c: Index for time, shiftable appliances, ESS, and residential customers.
T I B C: Set of timeslots, shiftable appliances, ESS, and residential customers.

B. Parameters

π_{DA}^t: DA electrovalence at timeslot t
π_{DR}^t: DR price at timeslot t
π_{F}^t: Flexibility price at timeslot t
π_{I}^{inc}: Incentive given to customers at timeslot t
P_{base}^t: The customer baseline load
P_{elec}^t: The energy consumption baseline of TCL
P_{ELEC}^t: The energy consumption baseline of BL
P_{batter}^t: The baseline load of BL
T_{out}^t: The outdoor temperature at timeslot t
\eta: Energy efficiency ratio of AC
p_{air}: Rated power of AC
R: Equivalent thermal resistance
C: Equivalent heat capacity
\varepsilon: Heat transfer coefficient

C. Variables

T_{on}^t: Temperature setting for the t^{th} AC
T_{off}^t: Control cycle of AC
N: Number of AC at the aggregated level
p_{elec}^t: The energy consumption baseline of SL
q_{b}: The energy consumption of the i^{th} shiftable appliance
N_{max}: The maximum acceptable load transfer times
P_{b;min/max}: Minimum/ Maximum power limitation for battery b at timeslot t
E_{ESS}: Minimum/ Maximum energy limitation for battery b at timeslot t
\eta_{c}, \eta_{b}: Charging/ Discharging efficiency of ESS

Energy demand of customers after DR
The energy consumption of all the TCL
The energy consumption of all the SL
Flexibility of customers
Flexibility of ESS
Binary variable denotes the on/off state of AC
The indoor temperature
The time duration when the AC is on
The time duration when the AC is off
Energy demand of SL at timeslot t
Binary variable that determines whether the i^{th} appliance shift out at timeslot t
Binary variable that determines whether the i^{th} appliance shift in at timeslot t
Binary variable; 1 indicates that the battery b is discharging at timeslot t, 0 otherwise
Energy of battery b at timeslot t
Aggregated power of all the batteries
The flexibility offered by customers and ESS
The electricity purchased from the DA market
Revenue of the aggregator
Income of providing electricity to customers
Income of providing flexibility to ISO
Cost of purchasing electricity
Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBDR</td>
<td>Incentive-based demand response</td>
</tr>
<tr>
<td>PBDR</td>
<td>Price-based demand response</td>
</tr>
<tr>
<td>HEMS</td>
<td>Home energy management system</td>
</tr>
<tr>
<td>BOS</td>
<td>Baseload of the shiftable loads</td>
</tr>
<tr>
<td>BOB</td>
<td>Baseload of the base loads</td>
</tr>
<tr>
<td>BL</td>
<td>Baseload</td>
</tr>
<tr>
<td>SL</td>
<td>Shiftable load</td>
</tr>
<tr>
<td>TCL</td>
<td>Thermostatically controlled load</td>
</tr>
<tr>
<td>EC</td>
<td>Customers who prefer high economic income</td>
</tr>
<tr>
<td>CC</td>
<td>Customers who prefer comfort</td>
</tr>
</tbody>
</table>

D. Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>C inc</td>
<td>Cost of offering customers incentives</td>
</tr>
</tbody>
</table>

I. INTRODUCTION

Demand response (DR) is designed to induce lower electricity consumption in the way of either price signals or incentive schemes [1] at times of high market prices or when grid reliability is endangered, and thus serves as a promising mechanism for system operators to settle the problems in the restructured electricity market. The high price volatility and reliability concerns have been the focus of many recent studies [22-26]. Mathematical flexibility characterisation methods are presented in [22] for different types of loads [23, 24] in the residential sector. The second method involved is the empirical methodology, which quantifies the full probability distribution function of the flexibility in response to economic incentives considering the surrounding variables through the quantile regression method [25]. The third group is a support vector machine (SVM) based forecast model, it could either be combined with the identification and extraction of cardinal features that may pose significant influence on the aggregated DR capacity [26], e.g., the weather conditions and monetary reward; or be combined with the classification of feasible and non-feasible smart houses. Remarkable performance has achieved through these studies in handling the problem of quantifying customers’ response, however, it would be better to further combine these studies with practical problems like the bidding problem of the aggregator. Few studies have proceeded from the household appliances’ level and integrated the responsiveness of residential customers into the optimal bidding problem of the aggregator.

To this end, this paper aims to characterize the responsiveness of residential customers under different incentives, which would then serve as a foundation for the aggregator to trade precisely in the DA market. The HEMS is proposed at the premise of the obtained electrical appliance, which is controlled through the HEMS. Remarkable performance has achieved by these studies in handling the problem of quantifying customers’ response, however, it would be better to further combine these studies with practical problems like the bidding problem of the aggregator. Few studies have proceeded from the household appliances’ level and integrated the responsiveness of residential customers into the optimal bidding problem of the aggregator.

As a profit-seeking entity, how to bid accurately in the electricity market and thereby earn the maximal profit is an unavoidable issue for the aggregator and has been investigated by many literature [13-18], among which some seek to achieve the profit-maximize objectives of all the market participants [13]; some design a quantitative compensation mechanism for residential customers to promote their involvement in DR [14]; and some target at the uncertainties confronted by the aggregator during the trading process including the generation of DGs, electricity market prices and participation factor of customers [15-18]. While these researches obtain the corresponding optimal strategy under various scenarios, they fail to take the physical constraints of the residential customers in DR programs into consideration, e.g., the load reduction capacity of each household appliance, the corresponding preference settings, etc., which will directly affect the bidding strategy formulation of the aggregator. Since in an IBDR, the aggregator relies on the agile household appliances to offer flexibility in reaction to changes in the electricity tariff and develop the electricity purchasing scheme without compromising the preferences of the customers [19-21]. If the responsiveness and preference of customers could not be considered and modeled properly, the aggregator will encounter a situation where it could not purchase precisely in the electricity market and thus endure the risk of profit-loss.

The modeling of residential customers’ flexibility has been the focus of many recent studies [22-26]. Mathematical flexibility characterization methods are presented in [22] for different types of loads [23, 24] in the residential sector. The second method involved is the empirical methodology, which quantifies the full probability distribution function of the flexibility in response to economic incentives considering the surrounding variables through the quantile regression method [25]. The third group is a support vector machine (SVM) based forecast model, it could either be combined with the identification and extraction of cardinal features that may pose significant influence on the aggregated DR capacity [26], e.g., the weather conditions and monetary reward; or be combined with the classification of feasible and non-feasible home energy management system (HEMS) operating trajectories [27], to forecast the flexibility for aggregated smart houses. Remarkable performance has achieved through these studies in handling the problem of quantifying customers’ response, however, it would be better to further combine these studies with practical problems like the bidding problem of the aggregator. Few studies have proceeded from the household appliances’ level and integrated the responsiveness of residential customers into the optimal bidding problem of the aggregator.

To this end, this paper aims to characterize the responsiveness of residential customers under different incentives, which would then serve as a foundation for the aggregator to trade precisely in the DA market. The HEMS is introduced here since it has been extensively deployed to better schedule the residential customers’ electricity consumption during DR events considering external factors including the weather, daily activities, customers’ preferences, population, etc. [28, 29]. The contributions of this paper can be summarized as follows:

1. The acquisition of the responsiveness function of the aggregated residential customers in relation to different incentives through the polynomial regression method. The response is the accumulation of the flexibility from each electrical appliance, which is controlled through the HEMS.

2. An optimal bidding model for the aggregator in the DA market considering both the residential customers and ESS is proposed at the premise of the obtained responsiveness function, which could improve the accuracy of the aggregators’ transactions and therefore gain more revenue.

3. The dataset from the Pecan Street experiments in Austin is utilized to verify the validity of the proposed
optimal bidding model and further prove its universality for various scenarios.

The remainder of this paper is organized as follows. In section II, the market structure is firstly introduced, followed by a brief introduction to the basic idea of this paper. Section III models the responsiveness of residential customers and then formulates the bidding strategy of the aggregator. A case study is carried out in section IV to verify the effectiveness of the model. Finally, the paper is summarized in section V, and the study prospect is advanced.

II. PROBLEM STATEMENT AND PROPOSED FRAMEWORK

A. Market structure

To better introduce the target problem of this paper, here the hierarchical market structure is firstly presented in Fig. 1. The direction of information flow in the figure is counter-clockwise inside the ellipse and clockwise outside. The aggregator offers DR service to the ISO and gains reward correspondingly. Besides, the aggregator bids in the DA market to purchase adequate electricity, which would be provided to the customers to satisfy their daily usage and to the ESS when they are charging. In accordance with the specific incentive given by the aggregator, the residential customers will change their inherent electricity consumption habits to earn compensation. The responsiveness of a customer could be traditionally calculated through the difference between power consumption in DR and without DR. To properly model the responsiveness of customers under specific incentive and then formulate the optimal bidding strategy of the aggregator correspondingly are the concentration of this paper.

To better introduce the target problem of this paper, here the hierarchical market structure is firstly presented in Fig. 1. The direction of information flow in the figure is counter-clockwise inside the ellipse and clockwise outside. The aggregator offers DR service to the ISO and gains reward correspondingly. Besides, the aggregator bids in the DA market to purchase adequate electricity, which would be provided to the customers to satisfy their daily usage and to the ESS when they are charging. In accordance with the specific incentive given by the aggregator, the residential customers will change their inherent electricity consumption habits to earn compensation. The responsiveness of a customer could be traditionally calculated through the difference between power consumption in DR and without DR. To properly model the responsiveness of customers under specific incentive and then formulate the optimal bidding strategy of the aggregator correspondingly are the concentration of this paper.

B. Residential customers

Each residential customer is assumed to be an independent individual who has control over all of its appliances through the HEMS. Since the bottom-up responsiveness of the residential customers will be investigated, that is, the response of household appliances, thus they can be further subdivided into: 1) Thermostatically controlled loads (TCL) that have the ability to store energy in the form of temperature, here only the air conditioner (AC) is considered; 2) Shiftable load (SL), including cloth-washer, furnace, and boiler, which can be transferred to other periods of time without significantly influence the regular usage of customers; 3) Baseload (BL), it mainly refers to appliances like electric cooker, refrigerator, lighting, computer, etc., which cannot be shifted or curtailed since they are the basic living guarantee.

For residential customers, various family backgrounds lead to different preferences. Here the customers are divided into two main categories: 1) customers who prefer high economic income (EC) and 2) customers who prefer comfort (CC). The former would respond positively to the incentives of aggregators so as to obtain more income while the latter pays more attention to their own comfortableness and are unwilling to change electricity consumption habits.

C. Basic idea and the proposed framework

The proposed bottom-up framework to handle the optimal bidding problem for the aggregator is presented in Fig. 2. It mainly includes two stages.

-stage 1

The first stage is to solve the problem concerning the description of the aggregated responsiveness of residential customers under different incentives. The first challenge that will be confronted here is data deficiency. Since once the DR program is implemented, the customers’ profile would be altered. One possibility is that we have access to the DR data but no non-DR data, and the other case is the opposite. The electricity appliances consumption data of 200 residential customers is available here and is regarded as the baseline load. Therefore, on the basis of the mathematical modeling of air conditioners and the shiftable loads, we come up with the DR data, which will be further compared with the baseline to obtain the amount of

Fig. 2 Architecture of the proposed framework

The first stage is to solve the problem concerning the description of the aggregated responsiveness of residential customers under different incentives.

The first stage is to solve the problem concerning the description of the aggregated responsiveness of residential customers under different incentives. The first challenge that will be confronted here is data deficiency. Since once the DR program is implemented, the customers’ profile would be altered. One possibility is that we have access to the DR data but no non-DR data, and the other case is the opposite. The electricity appliances consumption data of 200 residential customers is available here and is regarded as the baseline load. Therefore, on the basis of the mathematical modeling of air conditioners and the shiftable loads, we come up with the DR data, which will be further compared with the baseline to obtain the amount of
responsiveness. Noted that the data of each load categories should be compared with the corresponding baseline first and then accumulated to obtain the overall responsiveness of a residential customer, rather than the difference between the baseline before and after DR. This is because both load reduction and shifting exists in this process, chances are that the electricity of one appliance is curtailed in a time period but another appliance is shifted in, which would result in the offset of their function. In this case, the customers could not be remunerated reasonably for the service they provide and would consequently lead to their inactive participation in DR programs. Therefore, the flexibility of each kind of load would be calculated first to ensure the accuracy of the obtained aggregated responsiveness.

The second challenge is how to model the change in the customers’ preference with the engagement of incentives. It is evident that with the alteration of incentive, the engagement of customers in DR would also change, specifically, the tolerable temperature range for the air conditioners and the acceptable load transfer times will change. However, it would be quite tedious to adjust these settings accordingly whenever the incentive changes. Thus, the change in preference settings is transformed into the change in the proportion of EC and CC customers at the aggregated level. The proportion of EC is supposed to follow the normal distribution, which is the most commonly exists distribution. The customers’ preferences are sensitive to many factors, including the incentive, education experience, weather, etc.; therefore, it is reasonable to assume that it follows the normal distribution according to the central limit theorem. Noted that, if the DR dataset is available, there is no need to simulate the electricity consumption with DR but to estimate the baseline so as to calculate the responsiveness. After the acquisition of residential customers’ responses under different incentives, the polynomial regression method is adopted to fit the customers’ response function.

The second stage is the bidding optimization process for the aggregator taking into consideration both the residential customers and ESS. With the objective of maximizing the revenue of aggregators, the model would come up with the scheduling scheme of the ESS and the bidding strategy in the DA market.

III. Problem Formulation

A. Residential customers

For residential customers, their daily electricity consumption with DR is the sum of the TCL, SL, and BL, as shown in (1). Equation (2) calculates the flexibility offered by customers, or to say, the sum of the consumption changes of different load types. Noted that it is different from the net difference reflected in the customers’ profile, which is also the basis for the ISO’s reward. Different types of appliances would respond diversely under different given incentives, and the data-acquisition process could be shown as follows.

\[P_{\text{flex}} = P_{\text{TCL}} + P_{\text{SL}} + P_{\text{BL}} \ \forall t \in T \]

\[F_{\text{EC}} = (P_{\text{TCL}}^\text{max} - P_{\text{TCL}}^\text{min}) + (P_{\text{SL}}^\text{max} - P_{\text{SL}}^\text{min}) \ \forall t \in T \]

\[(3) \]

\[(4) \]

\[(5) \]

\[(6) \]

\[(7) \]

\[(8) \]

\[(9) \]

\[(10) \]

\[(11) \]

\[(12) \]

\[(13) \]

\[(14) \]

\[(15) \]

b) Shiftable load (SL)

Shiftable load contains the aforementioned cloth-washer, furnace, and boiler. The total amount of electricity consumption of these appliances ought to remain constant across the whole-time interval, as is presented in (12). Provided an electrical appliance is transferred to another time period, then the energy demand at this time will reduce by the energy that would have been consumed by it. Similarly, if another appliance moves in during this period, their load demand ought to be added, just as (11) denotes. It should be emphasized that the variation process of load demand is intermittent since the increase or decrease is based on appliance. Equation (13) indicates that for the ECs who are willing to offer load shifting, the maximum acceptable load transfer times would be given, while for the CCs the value is equal to zero. The amount of SL at the aggregated level could be calculated through (14).

\[P_{i}^\text{SL} = \frac{P_{i}^\text{max}}{\tau_{i}} \]

\[(14) \]

\[(15) \]
B. ESS

The ESS is assumed to be a kind of flexible resource that directly controlled and dispatched by the aggregator. With the objective to maximize its own interests, it is profitable for an aggregator to arrange the ESS to discharge when the electricity price is high in order to avoid exorbitant cost and charge when the price is low so as to reserve energy at a lower cost. The physical constraints of the ESS could be mathematically expressed by (16)-(23). The power and energy boundary of ESS is given in (16) and (17) first, followed by the energy balance in the adjacent period in (19) for both charging and discharging states. As (20) presents, the energy of the ESS after one cycle (24h is regarded as a complete cycle here) ought to be consistent with that at the beginning. The most important constraint is, the aggregated power offered by the ESS along with the electricity purchased from the DA should satisfy the daily usage of customers, shown in (22). Equation (23) denotes that only the energy discharged by ESS is regarded as its flexibility.

\[
\begin{align*}
& p_{i,\text{min}}^b \leq p_i^b \leq p_{i,\text{max}}^b \quad \forall b \in B, \forall t \in T \quad (16) \\
& E_{i,\text{min}}^{\text{b,}} \leq E_{i,\text{max}}^{\text{b,}} \quad \forall b \in B, \forall t \in T \quad (17) \\
& v = \begin{cases}
0, & p_i^b \leq 0, \text{ charging} \\
1, & p_i^b > 0, \text{ discharging}
\end{cases} \quad (18) \\
& E_i^c = \left\{ \begin{array}{ll}
E_{i,\text{b,}}^c - \eta_i \cdot p_i^b \cdot \Delta \tau, & \forall b \in B, \forall t \in T \quad (19)
\end{array} \right.
\end{align*}
\]

C. Optimal bidding model

The aggregator is a profit-seeking entity with the target to maximize its profit. The revenue of the aggregator can be divided into two parts, one is the income of selling electricity to residential customers (25), and the other is the remuneration for the flexibility provided to ISO (26). Similarly, the expenditure during its transaction also contains two portions, the cost to purchase electricity from the DA market (27), and the incentive offered to customers so as to encourage their participation (28). What needs to be explained is that ISO awards the aggregator according to the responsiveness of different appliances. After the acquisition of the specific data, the polynomial fitting method is introduced to fit the response characteristic. The obtained mathematical expression is shown as follows:

\[
y = 5.44 \cdot 10^6 \cdot x^3 - 4.891 \cdot 10^6 \cdot x^2 + 1.356 \cdot 10^6 \cdot x^3 \quad (29)
\]

Both the response value and the fitted curve are presented in Fig. 3, which intuitively reflect the well following performance of the fitted curve. It could also be observed that the response curve exhibits a similar trend with the change in the proportion of residential customers.

B. Responsiveness of residential customers under different incentives

The first step is to discover how would the residential customers’ respond to the different incentive signals, which could be obtained through the accumulation of the responsiveness of different appliances. After the acquisition of the specific data, the polynomial fitting method is introduced to fit the response characteristic. The obtained mathematical expression is shown as follows:

\[
y = 5.44 \cdot 10^6 \cdot x^3 - 4.891 \cdot 10^6 \cdot x^2 + 1.356 \cdot 10^6 \cdot x^3 \quad (29)
\]

Both the response value and the fitted curve are presented in Fig. 3, which intuitively reflect the well following performance of the fitted curve. It could also be observed that the response curve exhibits a similar trend with the change in the proportion of residential customers.

C. Selection of the optimal incentive value

To discover the optimal incentive value that the aggregator should offer to the customers, here various scenarios with different incentives are tested and the corresponding revenue

III. CASE STUDY

A. Dataset and Parameter Settings

The dataset utilized in this research is from the Pecan Street experiment in Austin, TX [33], where a total of 500 residential customers are investigated and the minute-resolution electricity consumption data at both the household level and appliance level are given. 200 of them are selected to verify the proposed optimal bidding strategy in summer; each is equipped with the electrical appliances involved in this research. Some relevant parameter settings are listed in Table I. It should be noted that the parameters of each AC should be different; here only one type is given.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{i,\text{max},j}^{\text{p,}}$</td>
<td>10, 120</td>
</tr>
<tr>
<td>$E_{i,\text{min},j}^{\text{p,}}$</td>
<td>-10, 30</td>
</tr>
<tr>
<td>η_i^{DM}</td>
<td>0.95</td>
</tr>
<tr>
<td>$E_i^{\text{b,}}$</td>
<td>40</td>
</tr>
<tr>
<td>R (° C/kW)</td>
<td>5.56</td>
</tr>
<tr>
<td>C (kW·° C)</td>
<td>0.18</td>
</tr>
<tr>
<td>$T_{\text{min}}^{\text{p,}}$</td>
<td>23.9</td>
</tr>
<tr>
<td>η</td>
<td>2.7</td>
</tr>
<tr>
<td>$N_i^{\text{b,}}$</td>
<td>5</td>
</tr>
<tr>
<td>$\eta_i^{\text{b,}}$</td>
<td>0.1877</td>
</tr>
<tr>
<td>μ</td>
<td>0.105</td>
</tr>
<tr>
<td>σ_i^2</td>
<td>5</td>
</tr>
</tbody>
</table>

B. Responsiveness of residential customers under different incentives

The first step is to discover how would the residential customers’ respond to the different incentive signals, which could be obtained through the accumulation of the responsiveness of different appliances. After the acquisition of the specific data, the polynomial fitting method is introduced to fit the response characteristic. The obtained mathematical expression is shown as follows:

\[
y = 5.44 \cdot 10^6 \cdot x^3 - 4.891 \cdot 10^6 \cdot x^2 + 1.356 \cdot 10^6 \cdot x^3 \quad (29)
\]

Both the response value and the fitted curve are presented in Fig. 3, which intuitively reflect the well following performance of the fitted curve. It could also be observed that the response curve exhibits a similar trend with the change in the proportion of residential customers.
of the aggregator could be obtained, as presented in Fig. 4, which indicates that the revenue increases with incentive and reaches the maximum at around 0.25, and then decreases subsequently. To seek out the peak point, we further listed the revenue and the proportion of EC around the peak in Table II, from which we could clearly observe that the optimal incentive value is 0.237 and the corresponding EC percent is 74%. This fact implies that if the incentive is less, the flexibility of aggregator is insufficient to achieve the maximum point, and if the incentive grows further, the increase of profit brought by the increase of flexibility could not offset the cost ought to be paid to customers.

![Fig. 4. Revenue of the aggregator under different incentives](image)

TABLE II. REVENUE AND PROPORTION OF EC AROUND THE PEAK

<table>
<thead>
<tr>
<th>Incentive</th>
<th>Revenue</th>
<th>EC (%)</th>
<th>Incentive</th>
<th>Revenue</th>
<th>EC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.229</td>
<td>7231.404</td>
<td>70.5</td>
<td>0.259</td>
<td>7365.672</td>
<td>82</td>
</tr>
<tr>
<td>0.233</td>
<td>7045.970</td>
<td>72.5</td>
<td>0.263</td>
<td>7206.750</td>
<td>83</td>
</tr>
<tr>
<td>0.237</td>
<td>7418.050</td>
<td>74</td>
<td>0.267</td>
<td>7301.044</td>
<td>84.5</td>
</tr>
<tr>
<td>0.240</td>
<td>7239.692</td>
<td>75.5</td>
<td>0.270</td>
<td>7257.877</td>
<td>85.5</td>
</tr>
<tr>
<td>0.244</td>
<td>7311.308</td>
<td>77</td>
<td>0.274</td>
<td>7274.607</td>
<td>86.5</td>
</tr>
<tr>
<td>0.248</td>
<td>7406.580</td>
<td>78</td>
<td>0.278</td>
<td>7102.186</td>
<td>87</td>
</tr>
<tr>
<td>0.252</td>
<td>7310.279</td>
<td>79.5</td>
<td>0.282</td>
<td>7265.140</td>
<td>88</td>
</tr>
<tr>
<td>0.255</td>
<td>7342.050</td>
<td>81</td>
<td>0.285</td>
<td>7009.526</td>
<td>89</td>
</tr>
</tbody>
</table>

D. Optimal bidding strategy under the optimal incentive

Then a further investigation of the aggregator’s bidding strategy in the optimal cases is provided. The value of some important variables is presented in Table II and the corresponding outcome is shown in Fig. 5-7.

The detail composition of the flexibility of a residential customer is presented in Fig. 5, where columns in different colors represent different kinds of responsive appliances. The columns below the abscissa stand for that some appliances move in during this period. For example, the third negative column (the fourth column) consists of the electricity consumption of the cloth-washer and the water-heater, that is, the two appliances are shifted from their normal operation time period to this one. It could also be observed that the load primarily transfers from around 15-21h to 0-5h. This is in accordance with the profit-maximization target of the aggregator since the DA electricity price and original energy demand of customers are both high in the former period and low in the latter. Similarly, the optimal scheduling scheme of the ESS reflects the same regularity, displayed in Fig. 6. The ESS would be arranged to discharge when the DA price is high and charge when it is low.

The revenue of the aggregator in each time period is shown in the first subgraph in Fig. 7. It could be observed that the profit of the aggregator is negative in some periods (0-5h). Since the ESS will charge and some appliances will move in during this period as mentioned before, thus the aggregator has to spend more on the purchasing of electricity, which leads to the situation where the revenue of selling flexibility could not offset the cost; therefore, the revenue is negative consequently. Noted that the overall revenue is still positive, as can be found in Table III. The second subgraph compares the initial and adjusted baseline. The difference between them is composed of both load curtailment and transfer. The reason why the modified baseline exceeds the original baseline is the shift-in of some appliance. The flexibility composition is exhibited in the third subgraph. For the ESS, only the energy discharged is regarded as its flexibility, the energy-charged is not considered because it brings the aggregator additional electricity purchase assignment rather than flexibility.

![Fig. 5. Composition of a residential customer’s flexibility](image)

TABLE III. RESULTS OF BIDDING WITH CERTAIN INCENTIVE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{DA}</td>
<td>39467.36159</td>
</tr>
<tr>
<td>P_{inc}</td>
<td>20479.9015</td>
</tr>
<tr>
<td>I_{flx}^{DA}</td>
<td>13117.21542</td>
</tr>
<tr>
<td>I_{flx}^{DA}</td>
<td>24619.62295</td>
</tr>
<tr>
<td>C_{flx}^{DA}</td>
<td>22910.76607</td>
</tr>
<tr>
<td>C_{flx}^{DA}</td>
<td>7408.02286</td>
</tr>
</tbody>
</table>

![Fig. 6. The relationship of ESS charging/discharging scheme and DA price](image)
The composition of residential customers cluster is a significant factor that influences the optimal bidding strategy of the aggregator. In the previous study, the proportion of EC is assumed to follow the normal distribution \((\mu = 0, \sigma^2 = 5)\). To verify the rationality of the method proposed in this paper, a further comparison is carried out to investigate the bidding strategy under normal distribution with different expected values and variance. The parameter settings are presented in Table IV. The incentive value that could maximize the revenue of the aggregator could be obtained through the same procedure as before, the outcome is shown in Table V and Fig. 8-9.

As can be discovered, the optimal profit of the aggregator would decrease with the increase of the deviation value \(\sigma\) and the expected value \(\mu\). Since the deviation determines the distribution amplitude, the larger the deviation value is, the smoother the distribution curve will be, that is, the residential customers would become more insensitive to the incentive signal. When the aggregator provides customers with more incentive, the growth rate of EC would be slower, which lead to the situation where the same optimal incentive value corresponds to different EC proportion. Therefore, the flexibility offered by residential customers decreases and the aggregator earns less. As for the expected value \(\mu\), it determines the location of the distribution curve. A smaller value of \(\mu\) stands for that many CC customers will transform to EC at a relatively low incentive, and the optimal incentive decrease consequently. Thus, the aggregator could achieve a higher profit. The results could serve as a recommendation for the aggregator to offer residential customers more DR-related information to help them better comprehend the potential benefits, which may inspire a higher engagement at a relatively low incentive value. For all the distribution of residential customers, the proposed bidding model could come up with the optimal bidding model of the aggregator, which would be suitable for other situations that may occur in practice.

Table IV. Parameters of Different Distributions

<table>
<thead>
<tr>
<th>Distribution (D)</th>
<th>(\mu)</th>
<th>(\sigma^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>D3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>D9</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>D10</td>
<td>-2</td>
<td>5</td>
</tr>
<tr>
<td>D11</td>
<td>-1.5</td>
<td>5</td>
</tr>
<tr>
<td>D12</td>
<td>-1</td>
<td>5</td>
</tr>
<tr>
<td>D17</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Table V. Results of Different Distributions

<table>
<thead>
<tr>
<th>EC (%)</th>
<th>Optimal Incentive</th>
<th>Optimal profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>92</td>
<td>0.237</td>
</tr>
<tr>
<td>D2</td>
<td>84</td>
<td>0.237</td>
</tr>
<tr>
<td>D3</td>
<td>79</td>
<td>0.237</td>
</tr>
<tr>
<td>D4</td>
<td>76</td>
<td>0.237</td>
</tr>
<tr>
<td>D5</td>
<td>73.5</td>
<td>0.237</td>
</tr>
<tr>
<td>D6</td>
<td>71.5</td>
<td>0.237</td>
</tr>
<tr>
<td>D7</td>
<td>70</td>
<td>0.237</td>
</tr>
<tr>
<td>D8</td>
<td>69</td>
<td>0.237</td>
</tr>
<tr>
<td>D9</td>
<td>68</td>
<td>0.237</td>
</tr>
</tbody>
</table>

E. Sensitivity analysis under different distribution

To verify the rationality of the method proposed in this paper, a further comparison is carried out. The general optimal bidding strategy without considering the specific usage of each appliance (method 2), as is proposed in \([14]\), will be investigated together with the method introduced here (method 1). The outcome is presented in Table VI and Fig. 10. As can be discovered, the revenue and the flexibility of method 1 are inferior to that of method 2. The interpretation for the low income of method 1 is that the change of load is not continuous as method 2, thus is incapable of reaching the optimal value. This could also serve as the explanation for the low income of method 1. The total flexibility in method 2 is more and the curves are generally smoother than method 1 where the changes are on the basis of the whole appliances. Since the formulation of ESS charging scheme follows the same basic principle, that is, charge when the electricity price is low and discharge when the contrary; thus, the scheme is essentially the same while for method 1 the value is not the optimum.

Table VI. Results of Different Distributions

<table>
<thead>
<tr>
<th>Distribution (D)</th>
<th>(\mu)</th>
<th>(\sigma^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>92</td>
<td>0.237</td>
</tr>
<tr>
<td>D2</td>
<td>84</td>
<td>0.237</td>
</tr>
<tr>
<td>D3</td>
<td>79</td>
<td>0.237</td>
</tr>
<tr>
<td>D4</td>
<td>76</td>
<td>0.237</td>
</tr>
<tr>
<td>D5</td>
<td>73.5</td>
<td>0.237</td>
</tr>
<tr>
<td>D6</td>
<td>71.5</td>
<td>0.237</td>
</tr>
<tr>
<td>D7</td>
<td>70</td>
<td>0.237</td>
</tr>
<tr>
<td>D8</td>
<td>69</td>
<td>0.237</td>
</tr>
<tr>
<td>D9</td>
<td>68</td>
<td>0.237</td>
</tr>
</tbody>
</table>

F. Comparison

To verify the rationality of the method proposed in this paper, a further comparison is carried out. The general optimal bidding strategy without considering the specific usage of each appliance (method 2), as is proposed in \([14]\), will be investigated together with the method introduced here (method 1). The result is presented in Table V and Fig. 8-9. As can be discovered, the revenue and the flexibility of method 1 are inferior to that of method 2. The interpretation for the low income of method 1 is that the change of load is not continuous as method 2, thus is incapable of reaching the optimal value. This could also serve as the explanation for the low income of method 1. The total flexibility in method 2 is more and the curves are generally smoother than method 1 where the changes are on the basis of the whole appliances. Since the formulation of ESS charging scheme follows the same basic principle, that is, charge when the electricity price is low and discharge when the contrary; thus, the scheme is essentially the same while for method 1 the value is not the optimum.
mathematically. The inconformity in flexibility leads to the consequence that the actual load demand is also different. The aggregator in the first method needs to purchase more electricity from the DA market and meanwhile gain less from selling flexibility, therefore the net revenue decreases. The result further proves the rationality of this method because the optimal value obtained by the previous method could not realize physically.

It still needs be noted that the initial focus of this work is to integrate customers’ behavior modeling into the bidding process of the aggregator. Future investigations to be undertaken will take into consideration the uncertainties in customers’ behavior, weather condition forecast and price forecast [34]. Furthermore, the popularity of electric vehicles [35] as well as the increasing number of residential customers who own distributed generation units [36-39] (especially PV equipment, e.g. solar water heaters) that brings tremendous impact to the customers’ normal electricity consumption. In addition, the optimal bidding strategy while the power system parameters have been modified by cyber-attack [40] will be discussed in the future research.

ACKNOWLEDGMENT

This work was supported by the National Key R&D Program of China (2018YFE0122200), in part by the Major Science and Technology Achievements Conversion Project of Hebei Province (19012112Z). Also, João P. S. Catalão acknowledges the support by FEDER funds through COMPETE 2020 and by Portuguese funds through FCT, under POCI-01-0145-FEDER-028903 (02/SAICT/2017).

REFERENCES

IV. CONCLUSION

This paper proposes an optimal bidding strategy of the aggregator on the basis of the responsiveness modeling of residential customers. Three types of loads are taken into consideration and the residential customers are categorized into EC and CC according to their preference for comfort or economic profit. After the acquisition of the customers’ response at the aggregated value, the polynomial fitting is suggested as a reasonable choice for processing the response function, which would be applied to the formulation process of the optimal bidding strategy of the aggregator. The numerical results verify the validity of the proposed bidding model, which is also be suitable for customers’ clusters with different levels of sensitivity to incentives. And it could also be concluded that the obtained bidding strategy is optimal physically rather than mathematically. Furthermore, since the revenue of the aggregator peaks when the EC percent is around 73, it could be implied that increasing the proportion of EC could improve the revenue to some extent. It might be better for the aggregator to induce more customers to provide more flexibility.
management of smart home energy resources under different power incentives.

