Risk-Constrained Scheduling and Offering Strategies of a Price-Maker Hydro Producer Under Uncertainty

Hugo M. I. Pousinho, Javier Contreras, Senior Member, IEEE, Anastasios G. Bakirtzis, Senior Member, IEEE, and João P. S. Catalão, Senior Member, IEEE

Abstract—This paper presents a stochastic mixed-integer linear programming (SMILP) approach to maximize total expected profit of one price-maker hydro producer in a pool-based electricity market. Head dependence, commitment decisions, discharge ramping, startup costs and forbidden zones are all effectively handled in our approach. Uncertainty about the competitors’ offers is adequately represented by residual demand curves (RDCs) scenarios. The management of risk is suitably addressed by conditional value-at-risk (CVaR) to provide the efficient frontier, i.e., the solutions set for which the expected profit may not be augmented without enlarging the variance of profit. Appropriate offering strategies to the pool are also developed, consisting of supply functions built for different risk levels. A representative cascaded hydro system with 7 reservoirs is considered to analyze and compare risk-neutral versus risk-averse results.

Index Terms—Hydro scheduling, offering strategies, price-maker, risk management, uncertainty.

NOTATION

The notation employed in this paper is shown below:

A. Indexes, Parameters, and Sets

- Reservoir index and set.
- Period index and set.
- Residual demand curve (RDC) scenario index and set.
- RDC step index and set.
- Volume interval index and set.
- Unit performance curve breakpoint index and set.
- Reservoirs upstream set relative to reservoir j.

B. Continuous Variables

- Value-at-risk.
- Auxiliary variable in scenario ω.
- Weight of breakpoint i for plant j in period k in scenario ω.
- Power output of plant j in period k in scenario ω.
- Water volume in reservoir j at the culmination of period k in scenario ω.
- Water inflow to reservoir j throughout period k.
- Water discharged by plant j in period k in scenario ω.
- Water spilled by reservoir j in period k in scenario ω.
- Water discharged by plant j at breakpoint i.
- Power output of plant j at breakpoint i for interval r.
- Water volume in reservoir j for interval r.
- Hydro producer’s quota in period k in scenario ω.
- Market price matching step s of the RDC in period k in scenario ω.
- Fraction of the quota of the producer for the selected RDC step s in period k in scenario ω.
- Power blocks summation from step 1 to step $s - 1$ of RDC in period k in scenario ω.

Manuscript received June 30, 2012; revised October 03, 2012; accepted November 18, 2012. This work was supported in part by FEDER funds (EU) through COMPETE and by Portuguese funds through FCT, under Project FCOMP-01-0124-FEDER-014887 (PTDC/EEL-EEC/110102/2009), and in part by Spanish funds through grant ENE2009-09541. The work of H. Pousinho was supported by FCT, under Ph.D. grant SFRH/BD/62965/2009. Paper no. TPWRS-00749-2012.

H. M. I. Pousinho and J. P. S. Catalão are with the University of Beira Interior, 6201-001 Covilhã, Portugal, and also with the Center for Innovation in Electrical and Energy Engineering, IST, 1049-001 Lisbon, Portugal (e-mail: catalao@ubi.pt).

J. Contreras is with the University of Castilla—La Mancha, E.T.S. de Ingenieros Industriales, 13071 Ciudad Real, Spain (e-mail: Javier.Contreras@uclm.es).

A. G. Bakirtzis is with the Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (e-mail: bakiana@eng.auth.gr).

Digital Object Identifier 10.1109/TPWRS.2012.2229473
C. Binary Variables

\(y_{\omega,j,k} \) Decision to start-up plant \(j \) in period \(k \) in scenario \(\omega \).

\(z_{\omega,j,k} \) Decision to shut-down plant \(j \) in period \(k \) in scenario \(\omega \).

\(m_{\omega,j,k} \) Unit commitment of plant \(j \) in period \(k \) in scenario \(\omega \).

\(d_{\omega,j,k,r} \) Binary variable equal to 1 if \(H_{j,r-1} \leq \omega_{j,k} < H_{j,r} \).

\(m_{\omega,j,k,r} \) Binary variable equal to 1 if \(T_{j,j-1} \leq t_{\omega,j,k} < T_{j,j} \) or \(T_{j,j} \leq t_{\omega,j,k} < T_{j,j+1} \).

\(n_{\omega,k,s} \) Binary variable equal to 1 if step \(s \) is the final step to achieve quota \(q_{\omega,k} \) in period \(k \) in scenario \(\omega \).

\(g_{\omega',\omega,k} \) Binary variable linking the offers in period \(k \) for scenarios \(\omega \) and \(\omega' \).

D. Functions

\(\lambda_{\omega,k}(q_{\omega,k}) \) RDC in period \(k \) in scenario \(\omega \).

\(\varphi_{\omega}(t_{\omega,j,k}) \) Linear piecewise estimation of power output function aimed at a parametric value of the water volume, \(\bar{\omega} \).

I. INTRODUCTION

DEREGULATION of the electricity industry has induced a formation of mechanisms to encourage competition [1]. In this framework, the aim of deregulation is to assure a clear separation between generation, transmission and distribution activities.

Hydro energy is currently one of the most significant renewable energy sources in the Portuguese system [2] and other parts of the world. Hydro units are fast in terms of operation, compared to coal-fired and natural gas units, ensuring a rapid response to load changes. This feature is important to meet peak demands and ensure network stability. Also, hydro units produce less pollution than competing technologies, being favorable alternatives for electricity generation at intermediate, peak and base loads [3].

Concerning future operations, the optimized management of the available water provides self-scheduling and embodies an important gain for hydro generating companies. Taking this into account, a hydro generating company submits optimal offers to the market, thus hydro scheduling represents a necessary tool that enables optimal bidding decisions [4].

Three time horizons are typically considered in hydro scheduling problems: short- (one day to one week), mid- (one week to one month) and long-terms (few months or even years) [5], [6]. The boundary conditions established by the mid-term scheduling are the reservoir levels that should be met at the day end [7]. Only the short-term hydro scheduling problem is considered here.

Water inflow can be taken as deterministic in the short-term, which is an acceptable assumption, especially when the time horizon is only one day. Indeed, on a daily basis, water inflows may be forecasted with rather good precision [8]. However, in the mid- and long-terms, water inflow must be treated as stochastic [9], [10].

The market environment is typically composed of a variety of submarkets to facilitate trade between consumers and power producers, such as the pool and the bilateral contracts markets. The pool market is particularly relevant to our problem, namely the day-ahead market, in which most of the energy is negotiated. As a consequence of the market power of some producers, two types of generating companies can be listed: price-takers [11]–[13] and price-makers [14]–[16].

Price-takers accept market prices without being able to affect them. Instead, price-makers have market power, thus being able to influence market prices to increase profit [17].

Price volatility has become a major risk factor for hydro producers. Risk management allows hedging against market uncertainty [18], which in turn can be modeled via scenarios. Uncertainty of the input variables stochastic programming is required, while risk measures can be used to avoid solutions that imply small profits or major costs [19]. Inflow uncertainty in the stochastic hydro-thermal scheduling problem was considered in [20] for the mid-term within a dynamic programming framework.

In the technical literature the hydro scheduling problem has been traditionally solved using dynamic programming, posing computational difficulties due to the curse of dimensionality. It is still applied nowadays in the case of a single hydro plant, as in [21], but not for cascaded hydro systems [22].

Soft computing methods have also been used for the hydro scheduling problem, such as differential evolution [23], cultural algorithm [24], immune algorithm [25] and particle swarm optimization variants [26]. However, convergence and numerical problems may occur with the use of heuristic procedures.

Mixed-integer linear programming (MILP) has proven to be a reliable option for solving the hydro scheduling problem [27], since the nonlinearities of the problem (such as the relation between power output of a plant and the corresponding water discharged), can be precisely incorporated with a linear piecewise estimation. Also, the solution can be found within an acceptable computation time with high accuracy [28]. A stochastic model can be utilized to enable profit maximization while minimizing financial risks [29].

Hence, this paper offers a stochastic MILP approach to maximize total expected profit of one price-maker hydro producer operating in a pool-based electricity market, hedging against risk and uncertainty. The head effect is integrated with an improved linearization technique, where binary variables allow us to model performance curves of hydro units, start-up costs, commitment decisions and forbidden zones.

The cascaded configuration, stochasticity and price-maker objective function were not considered in [27].

A price-maker formulation was considered in [14] and [15], but the power output was assumed to be a linear function of the water discharged, thus disregarding the head change.

Also, in [16] the residual demand curve (RDC) was deterministic, whereas, it is stochastic in or paper, considering risk aversion.

Hence, the contributions of the paper are four-fold:
1) A price-maker hydro producer owning a cascaded hydro system with 7 reservoirs is modeled using an SMILP approach, considering head dependence, commitment decisions, discharge ramping, start-up costs and forbidden zones;
2) Uncertainty about the competitors’ offers is adequately represented with RDCs scenarios;
3) Risk management is suitably incorporated through conditional value-at-risk (CVaR), providing the efficient frontier used by decision-makers;
4) Appropriate offering strategies to a pool-based electricity market are developed, consisting of supply functions built for different risk levels.

The paper is structured as follows. Section II addresses the issues related with the price-maker hydro producer considered. Section III provides the nonlinear and equivalent SMILP problem formulations, objective function and constraints. Section IV illustrates the proposed formulation with a real case study, and the conclusion is provided in Section V.

II. PRICE-MAKER HYDRO PRODUCER

In competitive electricity markets, the profitability of the generating companies depends not only on their own decisions, but also on the decisions of the other companies.

Under perfect competition, the market share of every generating company is small and no company can affect the market price. In this case, every company takes market prices for granted when devising its offering strategy, acting as a price-taker.

However, some generating companies may have a relatively high market share and are capable of exercising their market power, influencing market prices for their own benefit, meaning that a perfect competition model cannot be used, since the companies act as price-makers. When devising its offering strategy, a price-maker hydro producer takes into account the fact that it can affect market prices with its offers.

Our focus is to obtain the short-term operating strategy of a single price-maker hydro producer. Modeling the interaction among several price-makers’ strategies using game theory (Nash-Cournot model) is available in [30]. The interaction of the hydro producer with the other players is modeled by RDCs in this paper. The RDC considers the market price like a function (monotonically non-increasing) of the quota of the producer [31], which in turn is the offered quantity that is accepted by the market. Thus, the market price is obtained like a function of the quantity that the price-maker company offers to the market.

A. Residual Demand Curve (RDC)

The problem may be expressed as a nonlinear one with linear constraints, since profit results of the multiplication of price by the quota.

To overcome the difficulty of having a nonlinear optimization problem, several linearizing methods can be adopted to define the RDCs, namely using approximations of the following types: 1) polynomial; 2) piecewise linear; and 3) stepwise [31].

The method adopted in this work is characterized by a stepwise approximation of the RDC, consistent with the way bids are made in most pool-based electricity markets. The stepwise approximation provides a closer agreement between expected and resulting prices, as stated in [31].

According to [32], the number of steps to describe a RDC is small for fairly small changes in the quota, e.g., a variation of 20% in the quota commonly results in less than 10 steps. This provides a convenient framework for the construction of the mentioned curves. Indeed, considering a high number of steps may incur in high computation times or even intractability, due to the overwhelming need of having binary variables for its modeling.

Fig. 1 presents a characteristic stepwise RDC. This curve is represented as a sequence of price-quota pairs [33] that may be given linear constraints set with the use of binary variables that define the active step.

The RDCs of a price-maker producer can be determined by using market simulation or by employing forecasting methods. The RDCs are considered in this paper as known data, as in [33]. A correlations study of RDC patterns can be seen in [34].

As mentioned before, one of our contributions is to model uncertainty by a set of RDC scenarios.

The hydro producer must choose the hourly offer curves which are submitted to the market, aiming for profit maximization. The single offer curve is made up of the points of intersection amongst the RDC scenarios and the optimal price-quantity bids; the curve should be increasing simultaneously in quotas and prices. All scenarios of a particular hour are connected by increasing (monotonically non-decreasing) constraints.

Fig. 2 shows three RDC scenarios and the corresponding offer curve built through \((q_i, k, \lambda_i, k, \alpha)\) pairs. Each RDC scenario should have just one pair \((q_i, k, \lambda_i, k, \alpha)\) that should be situated in the RDC curve.

B. Risk Management

Value-at-Risk, \(\zeta\), is defined as

\[
\text{VaR} = \max \{x \mid P\{B \leq x\} \leq 1 - \delta\}. \quad (1)
\]
CVaR is expected profit not surpassing ζ:

$$\text{CVaR} = E(B \mid B < \zeta).$$

The discrete formulation of CVaR is the following:

$$\text{CVaR} = \frac{1}{1-\delta} \sum_{\omega \in \Omega} \eta_{\omega},$$

A corresponding representation of CVaR is given by

$$\text{CVaR} = \frac{1}{1-\delta} \sum_{\omega \in \Omega} \rho_{\omega} \eta_{\omega},$$

subject to

$$B_{\omega} + \zeta - \eta_{\omega} \leq 0,$$

$$\eta_{\omega} \geq 0.$$

III. STOCHASTIC PROBLEM FORMULATION

The problem consists in determining the optimal price-quota combination that maximizes the total profits of a price-maker hydro producer in a day-ahead pool-based electricity market.

A. Nonlinear Problem Formulation

The operation of a hydro producer performing as a price-maker can be mathematically modeled as

$$\text{Max} \sum_{\omega=1}^{\Omega} \rho_{\omega} \sum_{k=1}^{K} \lambda_{\omega,k} q_{\omega,k} - \sum_{j=1}^{J} SU_{\omega,j} y_{\omega,j,k} \text{subject to}$$

$$p_{\omega,j,k} \epsilon \prod_{j} \quad \forall \omega \in \Omega, \quad \forall j \in J, \quad \forall k \in K$$

$$q_{\omega,k} = \sum_{j=1}^{J} p_{\omega,j,k} \quad \forall \omega \in \Omega, \quad \forall k \in K.$$
3) Price-Maker Constraints: These constraints are defined as follows:

\[q_{\omega,k} = \sum_{j=1}^{J} p_{\omega,j,k} \quad \forall \omega \in \Omega, \; \forall k \in K \]
\[q_{\omega,k} = \sum_{s=1}^{S} \left(f_{\omega,k,s} + u_{\omega,k,s} q_{\min,k} \right) \quad \forall \omega \in \Omega, \; \forall k \in K \]
\[0 < f_{\omega,k,s} \leq w_{\omega,k,s} f_{\min,k} \quad \forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[\sum_{s=1}^{S} u_{\omega,k,s} = 1 \quad \forall \omega \in \Omega, \; \forall k \in K, \; \forall s \in S. \]

The set of constraints (15) is identical to (11). The set of constraints (16) defines the value of the producer’s quota, \(q_{\omega,k} \), in all hours, depending on the variables \(f_{\omega,k,s} \) and \(u_{\omega,k,s} \). The quota’s minimum value for step \(s \) is established as \(q_{\min,k} \) (note that \(q_{\min,k} = 0, \forall k \)), while nonnegative continuous variables \(f_{\omega,k,s} \) provide the added portion of step \(s \) that is occupied.

In (17) the lower bound takes nonnegative values for \(f_{\omega,k,s} \), while the upper bound doesn’t surpass the quota’s maximum value for the selected step \(s \) of the RDC in period \(k \); if step \(s \) is not chosen, \(u_{\omega,k,s} = 0 \), then the upper bound of \(f_{\omega,k,s} \) is null and, thus, \(f_{\omega,k,s} = 0 \).

In (18) the binary variables summation that characterizes every step \(s \) of RDC in period \(k \) is equal to one. This means that just one variable, \(u_{\omega,k,s} \), is active in each period, selecting the optimal step that aggregates the producer’s quota. If \(u_{\omega,k,s} = 1 \), then only the step \(s \) is selected for period \(k \).

4) Market Offer Constraints: These constraints are defined as follows:

\[q_{\omega,k} - q_{\omega^{'},k} \geq -M^y q_{\omega^{'},k} \quad \forall \omega, \omega' \in \Omega, \; \forall k \in K \]
\[q_{\omega,k} - q_{\omega^{'},k} \geq -(1 - g_{\omega,k}) M^y \]
\[\sum_{s=1}^{S} \lambda_{\omega,k,s} u_{\omega,k,s} - \sum_{s=1}^{S} \lambda_{\omega^{'},k,s} u_{\omega^{'},k,s} \geq -M^p g_{\omega,k} \]
\[\forall \omega, \omega' \in \Omega, \; \forall k \in K \]
\[\sum_{s=1}^{S} \lambda_{\omega^{'},k,s} u_{\omega^{'},k,s} - \sum_{s=1}^{S} \lambda_{\omega,k,s} u_{\omega,k,s} \geq -(1 - g_{\omega,k}) M^p \]
\[\forall \omega, \omega' \in \Omega, \; \forall k \in K, \; \forall s \in S. \]

These conditions are imposed for each pair of offers \([\omega, \omega']\) to ensure that only monotonically non-decreasing offers are submitted to the market, as seen in Fig. 2.

Accordingly to Fig. 2, each RDC scenario should have just one pair \((q_{\omega,k}, q_{\omega^{'},k})\), which should be situated in the RDC. \(M^y \) and \(M^p \) represent a large quota and a large price, respectively. If \(g_{\omega,k} = 0 \), constraints (19) and (20) are active, whereas, if \(g_{\omega,k} = 1 \), constraints (21) and (22) are active.

5) Hydro Constraints: These constraints are defined as follows:

\[p_{\omega,j,k} - \varphi \cdot \{ t_{\omega,j,k} \} = 0 \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[v_{\omega,j,k} = v_{\omega,j,k-1} + \alpha_{j,k} \]
\[+ \sum_{m \in M} \left(t_{\omega,m,k} \tau_{m} + s_{\omega,m,k} \tau_{m} \right) \]
\[- t_{\omega,j,k} - s_{\omega,j,k} \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[v_{j}^{\min} \leq v_{\omega,j,k} \leq v_{j}^{\max} \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[u_{\omega,j,k} v_{\omega,j,k}^{\min} \leq t_{\omega,j,k} \leq u_{\omega,j,k} v_{\omega,j,k}^{\max} \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[l_{\omega,j,k} = l_{\omega,j,k} + R_j \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[p_j^{\min} \leq p_{\omega,j,k} \leq p_j^{\max} \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[s_{\omega,j,k} \geq 0 \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[y_{\omega,j,k} - s_{\omega,j,k} \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[y_{\omega,j,k} + s_{\omega,j,k} \leq 1 \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[l_{\omega,j,k} - \sum_{i \in \Omega} T_{j,k} v_{\omega,j,k,i} = 0 \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[\sum_{i \in \Omega} v_{\omega,j,k,i} - w_{\omega,j,k} = 0 \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[\pi_{\omega,j,k} - m_{\omega,j,k} \leq 0 \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[m_{\omega,j,k} + m_{\omega,j,k} \leq 1 \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K, \; \forall l \in Z : l < l - 1 \]
\[\sum_{r \in R} d_{\omega,j,k} + r = 1 \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[p_{\omega,j,k} - \sum_{i \in \Omega} P_{j,i,r} \pi_{\omega,j,k,i} - \Delta P_{j,r} (1 - d_{\omega,j,k} + r) \leq 0 \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[v_{\omega,j,k} - \sum_{r \in R} H_{j,r} d_{\omega,j,k} + r \leq 0 \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[v_{\omega,j,k} = v_{j}^{\text{initial}} \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]
\[v_{\omega,j,k} = v_{j}^{\text{final}} \]
\[\forall \omega \in \Omega, \; \forall j \in J, \; \forall k \in K \]

In (23) the power output, \(p_{\omega,j,k} \), is connected to water discharged and characteristics of the reservoir.

An improved method of linearization is implemented considering the head change effect. This method corresponds to: an improvement of [11] for a parametric value of water volumes, and a more accurate assessment of the power output upper bound using a convex mixture methodology taking into account both discharges and volumes [27]. Three preset water volume quantities \(H_{j,k} \) are implemented. The \(p_{\omega,j,k} - q_{\omega,j,k} \) relation is denoted by a linear piecewise estimation with 4 breakpoints for each water volume.

Equation (24) represents the continuity equation (water balance) for the reservoirs. In (24) it is assumed that the water travel
time between consecutive reservoirs is less than 1 hour, due to the distances involved.

In (25), the upper and lower water volume bounds are defined. In (26), the same happens for the water discharged. The binary variable \(w_{i,j,k} \) is identical to 1 if plant \(j \) is working in period \(k \); else, it is identical to zero. Constraints on discharge ramp rates are implemented in (27). In (28), the upper/lower bounds on power output are defined. Equation (29) defines water spillage as a null or non-negative value. Equations (30) and (31) model the start-up and shutdown of hydro plants.

Constraints (32)–(39) complete the model (12)–(31) approaching the power output function (23) by a parametric value of water volumes.

Equations (32)–(33) express the water to be discharged by plant \(j \) in period \(k \). According to (34), \(w_{i,j,k} \) may be nonzero only when the related binary variable \(m_{i,j,k} \) is equal to one. Note that \(0 \leq w_{i,j,k} \leq 1 \).

Equation (36) establishes the logical value of the \(d \) variables responsible for determining the volume intervals. Equation (37) expresses the power output, \(p_{i,j,k} \), for interval \(r \).

Equations (38) and (39) define, for every period \(k \), the two farthest water volumes within the interval in which the water volume, \(v_{i,k} \), is calculated. In (40) and (41), the initial and final reservoir volumes are set.

The algorithm used to solve the entire problem is represented with a flowchart in Fig. 3. The major steps involved in the algorithm implementation are described as follows.

Step 1: Obtaining the information about the RDC scenarios of the price-maker hydro producer for each hour of the bidding period. In this problem, RDC scenarios are assumed to be known.

Step 2: Initializing the weighting parameter \((\alpha = 0) \).

Step 3: Solving the SMILP hydro producer problem (12)–(41) described previously. Once the solution is obtained, the hydro producer derives its optimal hourly supply function, i.e., the optimal price and energy amount that the hydro producer needs to offer in every period.

Step 4: After obtaining the optimal offers, update the weighting parameter, \(\alpha \). If the chosen value of \(\alpha \) has been obtained, the simulation is concluded; else, the simulation will continue in the previous step.

Step 5: Finally, taking into account the portfolio of the optimal solutions for all weighting parameters, it is possible to build the efficient frontier.

IV. CASE STUDY

The SMILP problem formulation has been tested on a representative cascaded hydro system with 7 reservoirs, as the one in the Douro River in Portugal. The hydro data and topology can be seen in [12].

The modeling is carried out in MATLAB environment [36] and solved using CPLEX 12.1, considering a 3.47-GHz dual processor with 48 GB RAM.

A pre-defined final water storage is included equal to 80% of the maximum storage. Storage targets can be derived from medium-term models [37].

The start-up costs of the hydro units are assumed to be given by \(SU_j = p^{\text{start}} \times 2.5 \) [8], and forbidden zones are taken into account using (26). The time horizon is one day, since a day-ahead market is considered. The RDCs are given as stepwise functions with 5 steps. The total number of RDCs scenarios is 10.

Fig. 4 presents the RDCs scenarios at hours 10, 11, 15, 16, 22, and 23. The optimal solution corresponds to the specific points that define the offering strategies for each RDC. Table I provides the dimension of the optimization problem.

The efficient frontier curve, built in terms of the expected profit versus STD of profit, is given in Fig. 5 for six values of \(\alpha \). Analyzing Fig. 5 it can be seen that a risk-neutral hydro producer \((\alpha = 0) \) aims to achieve a $266 060 profit with a $25 522 STD.
On the contrary, a risk-averse hydro producer ($\alpha = 1$) expects a lower profit of $260,901, with a lower STD, $20,701.

Table II establishes the profit variation for different levels of risk, ranging from a risk-averse to a risk-neutral hydro producer. The expected profit increases about 2% from $\alpha = 1$ to $\alpha = 0$. Nevertheless, the STD of the profit may also increase significantly. Also, it can be seen in Table II that a CVaR increase of about 4.5% diminishes expected profit almost 2%. Hence, diverse hydro producers can have different attitudes towards risk, considering Fig. 5 and Table II.

Figs. 6 and 7 provide the power output of each plant for risk levels $\alpha = 0$ and $\alpha = 1$, respectively. Hydro generation is adequately distributed along the day to obtain the optimum intersections with the RDCs, i.e., the best combination (quota, price) in each hour for expected profit maximization. Note that the risk-averse hydro producer shown in Fig. 7 produces a relatively high amount of energy due to lower electricity prices.

Table III shows that the average market price for a risk-averse hydro producer ($\alpha = 1$) is lower than the price of a risk-neutral hydro producer ($\alpha = 0$).

As a consequence of the lower average market price obtained by the risk-averse hydro producer, its average quota is slightly higher. Nevertheless, the price-quota combination achieved by the risk-neutral hydro producer is more profitable but at the expense of having higher values of the STDs, as shown in Fig. 5 and Table II.

The mean hourly production for the risk-neutral producer is illustrated in Fig. 8, while the respective mean market prices are illustrated in Fig. 9. Fig. 8 is equivalent to the quotas summation for all scenarios in every period k. According to Figs. 8 and 9, market prices do not commonly follow the quota variation of the hydro producer during the day, meaning that market power is enforced. This variation pattern may be employed to monitor market power.

Fig. 10 provides the offer curves to the market for the whole system as a group, considering both risk-neutral ($\alpha = 0$) and risk-averse ($\alpha = 1$) hydro producers. It can be realized that, usually, offers for $\alpha = 0$ present higher prices for smaller…
amounts of energy offered, in order to increase the expected profit. Nevertheless, this is not always the case, as can be seen for hours 11 and 22 in Fig. 10.

Taking into account the mean value of the production and the market prices in each period, shown in Figs. 8 and 9, respectively, a risk-neutral hydro producer can vary the amount of market power exerted depending on the energy block chosen through those supply curves depicted in Fig. 10.

To assess the effectiveness of the stochastic approach over a deterministic approach, the value of stochastic solution (VSS) has been determined. The VSS is given by

\[VSS = Z^{S*} - Z^{D*} \]

as \(Z^{S*} \) and \(Z^{D*} \) represent optimal objective function values of stochastic and deterministic problems, respectively.

To have a fair and unambiguous comparison, constraints (19)–(22) were not included in this comparison. VSS is given by \(VSS = \$295\,026 - \$271\,198 = \$23\,828 \), i.e., \(VSS(\%) = 8.79\% \).

Note that \$271\,198 is the average profit achieved for the deterministic problem. The solution obtained using the stochastic approach is noticeably better than using a deterministic approach. Hence, the SMILP approach is simultaneously accurate and computationally satisfactory.

V. CONCLUSION

RDCs scenarios and risk-aversion using CVaR are simultaneously considered in the optimal scheduling and strategies’ development of a hydro producer performing as a price-maker. All major hydro generation technical characteristics are modeled through a stochastic mixed-integer linear programming formulation. The good performance of the decision making procedure is tested using a case study based on a real hydro chain in Portugal where head dependence plays a major role. The trade-off between maximizing profit and minimizing risk is provided by the efficient frontier curve, which represents an important added-value to the decision makers. The optimal combination of price-quantity bids allows us maximizing the hydro producer’s expected profits in the market. This is reflected in greater expected profits attained by the risk-neutral hydro producer at the expense of higher STDs. The value of the stochastic solution shows a 9\% improvement over the deterministic solution. Furthermore, the computation time is acceptable, according to the large number of continuous and binary variables, showing the value of the approach.

REFERENCES

Hugo M. I. Pousinho received the M.Sc. degree from the University of Beira Interior (UBI), Covilha, Portugal, in 2009, where he is currently pursuing the Ph.D. degree. His research interests include hydro scheduling, price, and wind forecasting.

Javier Contreras (SM’05) received the B.S. degree in electrical engineering from the University of Zaragoza, Zaragoza, Spain, in 1989, the M.Sc. degree from the University of Southern California, Los Angeles, in 1992, and the Ph.D. degree from the University of California, Berkeley, in 1997.

He is currently a Full Professor at the University of Castilla-La Mancha, Ciudad Real, Spain. His research interests include power systems planning, operations and economics, and electricity markets.

Anastasios G. Bakirtzis (S’77–M’79–SM’95) received the Dipl.Eng. Degree from the Department of Electrical Engineering, National Technical University, Athens, Greece, in 1979 and the M.S.E.E. and Ph.D. degrees from Georgia Institute of Technology, Atlanta, in 1981 and 1984, respectively.

He is currently a Full Professor at the Aristotle University of Thessaloniki, Thessaloniki, Greece. His research interests include power system operation, planning, and economics.

João P. S. Catalão (M’04–SM’12) received the M.Sc. degree from the Instituto Superior Técnico (IST), Lisbon, Portugal, in 2003 and the Ph.D. degree from the University of Beira Interior (UBI), Covilha, Portugal, in 2007.

He is currently a Professor at UBI, Director of M.Sc. in electromechanical engineering (EUR-ACE label), and Researcher at CIEEE-IST. His research interests include power system operations and planning, distributed renewable generation, demand response, and smart grids. He is the Editor of the book entitled Electric Power Systems: Advanced Forecasting Techniques and Optimal Generation Scheduling (Boca Raton, FL: CRC Press, 2012).